Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Mol Ther Methods Clin Dev ; 32(1): 101200, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38445045

ABSTRACT

Alpha-1 antitrypsin deficiency (AATD) is characterized by both chronic lung disease due to loss of wild-type AAT (M-AAT) antiprotease function and liver disease due to toxicity from delayed secretion, polymerization, and aggregation of misfolded mutant AAT (Z-AAT). The ideal gene therapy for AATD should therefore comprise both endogenous Z-AAT suppression and M-AAT overexpression. We designed a dual-function rAAV3B (df-rAAV3B) construct, which was effective at transducing hepatocytes, resulting in a considerable decrease of Z-AAT levels and safe M-AAT augmentation in mice. We optimized df-rAAV3B and created two variants, AAV3B-E12 and AAV3B-G3, to simultaneously enhance the concentration of M-AAT in the bloodstream to therapeutic levels and silence endogenous AAT liver expression in cynomolgus monkeys. Our results demonstrate that AAV3b-WT, AAV3B-E12, and AAV3B-G3 were able to transduce the monkey livers and achieve high M-AAT serum levels efficiently and safely. In this nondeficient model, we did not find downregulation of endogenous AAT. However, the dual-function vector did serve as a potentially "liver-sparing" alternative for high-dose liver-mediated AAT gene replacement in the context of underlying liver disease.

2.
Mol Ther ; 31(12): 3441-3456, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37814449

ABSTRACT

Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.


Subject(s)
Antibodies, Neutralizing , Capsid , Humans , Mice , Animals , Dependovirus , Intravitreal Injections , Transduction, Genetic , Primates/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Genetic Vectors/genetics
3.
Hum Gene Ther ; 34(7-8): 289-302, 2023 04.
Article in English | MEDLINE | ID: mdl-36950804

ABSTRACT

Capsid engineering of adeno-associated virus (AAV) can surmount current limitations to gene therapy such as broad tissue tropism, low transduction efficiency, or pre-existing neutralizing antibodies (NAb) that restrict patient eligibility. We previously generated an AAV3B combinatorial capsid library by integrating rational design and directed evolution with the aim of improving hepatotropism. A potential isolate, AAV3B-DE5, gained a selective proliferative advantage over five rounds of iterative selection in hepatocyte spheroid cultures. In this study, we reanalyzed our original dataset derived from the AAV3B combinatorial library and isolated variants from earlier (one to three) rounds of selection, with the assumption that variants with faster replication kinetics are not necessarily the most efficient transducers. We identified a potential candidate, AAV3B-V04, which demonstrated significantly enhanced transduction in mouse-passaged primary human hepatocytes as well as in humanized liver chimeric mice, compared to the parental AAV3B or the previously described isolate, AAV3B-DE5. Interestingly, the AAV3B-V04 capsid variant exhibited significantly reduced seroreactivity to pooled or individual human serum samples. Forty-four percent of serum samples with pre-existing NAbs to AAV3B had 5- to 20-fold lower reciprocal NAb titers to AAV3B-V04. AAV3B-V04 has only nine amino acid substitutions, clustered in variable region IV compared to AAV3B, indicating the importance of the loops at the top of the three-fold protrusions in determining both transduction efficiency and immunogenicity. This study highlights the effectiveness of rational design combined with targeted selection for enhanced AAV transduction via molecular evolution approaches. Our findings support the concept of limiting selection rounds to isolate the best transducing AAV3B variant without outgrowth of faster replicating candidates. We conclude that AAV3B-V04 provides advantages such as improved human hepatocyte tropism and immune evasion and propose its utility as a superior candidate for liver gene therapy.


Subject(s)
Capsid , Immune Evasion , Humans , Animals , Mice , Capsid/metabolism , Immune Evasion/genetics , Transduction, Genetic , Hepatocytes/metabolism , Capsid Proteins/genetics , Antibodies, Neutralizing , Tropism/genetics , Dependovirus , Genetic Vectors/genetics
4.
Transl Vis Sci Technol ; 11(8): 28, 2022 08 01.
Article in English | MEDLINE | ID: mdl-36018583

ABSTRACT

Purpose: Retinal pericytes play a vital role in maintaining retinal homeostasis, and their dysfunction underlies pathogenesis in such vascular eye diseases as diabetic retinopathy and wet age-related macular degeneration. Consequently, retinal pericytes are attractive therapeutic targets for gene therapy, but effectively targeting pericytes with recombinant adeno-associated virus (rAAV) vectors remains a challenge. Methods: We introduced genetic modifications into the surface-exposed variable regions of the rAAV2/2 capsid to generate a complex library (>1 × 107) of capsid mutants that were then screened for preferential tropism toward retinal pericytes. Using the Tg(Cspg4-DsRed.T1)1Akik/J reporter mouse model, which has red fluorescent pericytes that can be isolated via flow cytometry in order to recover vector genomes, we performed three rounds of screening and identified seven putative mutants capable of transducing retinal pericytes. Results: Following intravitreal administration of mutant vectors packaging ubiquitously expressing green fluorescent protein reporters and postmortem flow cytometry of enzymatically digested retinae, two mutants in particular, Peri-E and Peri-G, demonstrated significantly greater transduction of retinal pericytes than unmodified rAAV2/2 (1.4-fold and 2.8-fold, respectively). Conclusions: Although difficult to characterize the effect of each point mutation in the context of multiple amino acid variations from the wild-type AAV2 sequence, we identified several point mutations that may play critical roles in limiting HSPG binding, evading neutralization by murine A20 monoclonal antibodies, modulating antigenicity, and evading ubiquitination to ultimately improve transduction efficiency of retinal pericytes. Translational Relevance: Identification of novel retinal pericyte targeting rAAV vectors enables the development of new, long-lasting gene therapies for retinal diseases such as diabetic retinopathy and wet age-related macular degeneration.


Subject(s)
Diabetic Retinopathy , Macular Degeneration , Animals , Dependovirus , Genetic Vectors , Mice , Pericytes , Transduction, Genetic
5.
Mol Ther Methods Clin Dev ; 19: 347-361, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33145371

ABSTRACT

Limitations to successful gene therapy with adeno-associated virus (AAV) can comprise pre-existing neutralizing antibodies to the vector capsid that can block cellular entry, or inefficient transduction of target cells that can lead to sub-optimal expression of the therapeutic transgene. Recombinant serotype 3 AAV (AAV3) is an emerging candidate for liver-directed gene therapy. In this study, we integrated rational design by using a combinatorial library derived from AAV3B capsids with directed evolution by in vitro selection for liver-targeted AAV variants. The AAV3B-DE5 variant described herein was undetectable in the original viral library but gained a selective advantage upon in vitro passaging in human hepatocarcinoma spheroid cultures. AAV3B-DE5 contains 24 capsid amino acid substitutions compared with AAV3B, distributed among all five variable regions, with strong selective pressure on VR-IV, VR-V, and VR-VII. In vivo, AAV3B-DE5 demonstrated improved human hepatocyte tropism in a liver chimeric mouse model. Importantly, this variant exhibited reduced seroreactivity to human intravenous immunoglobulin (i.v. Ig), as well as individual serum samples from 100 healthy human donors. Therefore, molecular evolution using a combinatorial library platform generated a viral capsid with high hepatocyte tropism and enhanced evasion of pre-existing AAV neutralizing antibodies.

6.
Mol Ther ; 25(12): 2661-2675, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-28890324

ABSTRACT

The major drawback of the Baculovirus/Sf9 system for recombinant adeno-associated viral (rAAV) manufacturing is that most of the Bac-derived rAAV vector serotypes, with few exceptions, demonstrate altered capsid compositions and lower biological potencies. Here, we describe a new insect cell-based production platform utilizing attenuated Kozak sequence and a leaky ribosome scanning to achieve a serotype-specific modulation of AAV capsid proteins stoichiometry. By way of example, rAAV5 and rAAV9 were produced and comprehensively characterized side by side with HEK293-derived vectors. A mass spectrometry analysis documented a 3-fold increase in both viral protein (VP)1 and VP2 capsid protein content compared with human cell-derived vectors. Furthermore, we conducted an extensive analysis of encapsidated single-stranded viral DNA using next-generation sequencing and show a 6-fold reduction in collaterally packaged contaminating DNA for rAAV5 produced in insect cells. Consequently, the re-designed rAAVs demonstrated significantly higher biological potencies, even in a comparison with HEK293-manufactured rAAVs mediating, in the case of rAAV5, 4-fold higher transduction of brain tissues in mice. Thus, the described system yields rAAV vectors of superior infectivity and higher genetic identity providing a scalable platform for good manufacturing practice (GMP)-grade vector production.


Subject(s)
Cell Culture Techniques , Dependovirus/genetics , Genetic Vectors/genetics , Virus Replication , Amino Acid Sequence , Animals , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell Line , Dependovirus/classification , Dependovirus/physiology , Gene Expression , Gene Order , Genes, Reporter , HEK293 Cells , Humans , Mice , Sf9 Cells , Tissue Distribution , Transduction, Genetic , Viral Load
7.
J Transl Med ; 15(1): 94, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28460646

ABSTRACT

BACKGROUND: Adeno-associated virus (AAV) gene therapy vectors have shown the best outcomes in human clinical studies for the treatment of genetic diseases such as hemophilia. However, these pivotal investigations have also identified several challenges. For example, high vector doses are often used for hepatic gene transfer, and cytotoxic T lymphocyte responses against viral capsid may occur. Therefore, achieving therapy at reduced vector doses and other strategies to reduce capsid antigen presentation are desirable. METHODS: We tested several engineered AAV capsids for factor IX (FIX) expression for the treatment of hemophilia B by hepatic gene transfer. These capsids lack potential phosphorylation or ubiquitination sites, or had been generated through molecular evolution. RESULTS: AAV2 capsids lacking either a single lysine residue or 3 tyrosine residues directed substantially higher coagulation FIX expression in mice compared to wild-type sequence or other mutations. In hemophilia B dogs, however, expression from the tyrosine-mutant vector was merely comparable to historical data on AAV2. Evolved AAV2-LiC capsid was highly efficient in hemophilia B mice but lacked efficacy in a hemophilia B dog. CONCLUSIONS: Several alternative strategies for capsid modification improve the in vivo performance of AAV vectors in hepatic gene transfer for correction of hemophilia. However, capsid optimization solely in mouse liver may not predict efficacy in other species and thus is of limited translational utility.


Subject(s)
Capsid/metabolism , Dependovirus/genetics , Factor IX/genetics , Gene Transfer Techniques , Genetic Engineering , Animals , Dogs , Genetic Vectors/metabolism , Hemophilia B/genetics , Hepatocytes/metabolism , Liver/metabolism , Lysine/genetics , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Mutation/genetics , Transduction, Genetic , Tyrosine/genetics
8.
Mol Ther Methods Clin Dev ; 5: 142-152, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28480313

ABSTRACT

Multiple independent adeno-associated virus (AAV) gene therapy clinical trials for hemophilia B, utilizing different AAV serotypes, have reported a vector dose-dependent loss of circulating factor IX (FIX) protein associated with capsid-specific CD8+ T cell (Cap-CD8) elimination of transduced hepatocytes. Hemophilia B patients who develop transient transaminitis and loss of FIX protein may be stabilized with the immune-suppressive (IS) drug prednisolone, but do not all recover lost FIX expression, whereas some patients fail to respond to IS. We developed the first animal model demonstrating Cap-CD8 infiltration and elimination of AAV-transduced hepatocytes of immune-deficient mice. Here, we extend this model to an immune-competent host where Cap-CD8 transfer to AAV2-F9-treated mice significantly reduced circulating and hepatocyte FIX expression. Further, we studied two high-expressing liver tropic AAV2 variants, AAV2-LiA and AAV2-LiC, obtained from a rationally designed capsid library. Unlike AAV2, Cap-CD8 did not initially reduce circulating FIX levels for either variant. However, FIX levels were significantly reduced in AAV2-LiC-F9-treated, but not AAV2-LiA-F9-treated, mice at the study endpoint. Going forward, the immune-competent model may provide an opportunity to induce immunological memory directed against a surrogate AAV capsid antigen and study recall responses following AAV gene transfer.

9.
Methods Mol Biol ; 1382: 151-73, 2016.
Article in English | MEDLINE | ID: mdl-26611585

ABSTRACT

Directed evolution represents an attractive approach to derive AAV capsid variants capable of selectively infect specific tissue or cell targets. It involves the generation of an initial library of high complexity followed by cycles of selection during which the library is progressively enriched for target-specific variants. Each selection cycle consists of the following: reconstitution of complete AAV genomes within plasmid molecules; production of virions for which each particular capsid variant is matched with the particular capsid gene encoding it; recovery of capsid gene sequences from target tissue after systemic administration. Prevalent variants are then analyzed and evaluated.


Subject(s)
Dependovirus/physiology , Plasmids/genetics , Virion/genetics , Animals , Dependovirus/genetics , Gene Library , Genetic Engineering , Genome, Viral , HEK293 Cells , Humans , Mice , Viral Tropism
10.
Mol Ther Methods Clin Dev ; 2: 15041, 2015.
Article in English | MEDLINE | ID: mdl-26793739

ABSTRACT

Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

11.
Mol Ther ; 22(11): 1900-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25048217

ABSTRACT

Methodologies to improve existing adeno-associated virus (AAV) vectors for gene therapy include either rational approaches or directed evolution to derive capsid variants characterized by superior transduction efficiencies in targeted tissues. Here, we integrated both approaches in one unified design strategy of "virtual family shuffling" to derive a combinatorial capsid library whereby only variable regions on the surface of the capsid are modified. Individual sublibraries were first assembled in order to preselect compatible amino acid residues within restricted surface-exposed regions to minimize the generation of dead-end variants. Subsequently, the successful families were interbred to derive a combined library of ~8 × 10(5) complexity. Next-generation sequencing of the packaged viral DNA revealed capsid surface areas susceptible to directed evolution, thus providing guidance for future designs. We demonstrated the utility of the library by deriving an AAV2-based vector characterized by a 20-fold higher transduction efficiency in murine liver, now equivalent to that of AAV8.


Subject(s)
Capsid Proteins/genetics , DNA, Viral/analysis , Dependovirus/genetics , Genetic Vectors/administration & dosage , Liver/virology , Amino Acid Sequence , Amino Acids , Animals , Gene Library , Genetic Therapy , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Male , Mice , Mice, Inbred C57BL , Organ Specificity , Sequence Analysis, DNA , Transduction, Genetic
12.
Int J Syst Evol Microbiol ; 59(Pt 9): 2302-7, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19620379

ABSTRACT

A novel, obligately anaerobic, psychrotolerant bacterium, designated strain PPP2T, was isolated from guano of the Magellanic penguin (Spheniscus magellanicus) in Chilean Patagonia. Cells were Gram-stain-positive, spore-forming, straight rods (0.7-0.8x3.0-5.0 microm) that were motile by means of peritrichous flagella. Growth was observed at pH 6.7-9.7 (optimum pH 8.3) and 2-37 degrees C (optimum 29 degrees C). Growth was observed between 0 and 4% (w/v) NaCl with optimum growth at 0.5% (w/v). Strain PPP2T was a catalase-negative chemo-organoheterotroph that was capable of fermentative metabolism. Peptone, bacto-tryptone, Casamino acids, oxalate, starch, chitin and yeast extract were utilized as substrates. The major metabolic products were acetate, butyrate and ethanol. Strain PPP2T was resistant to ampicillin, but sensitive to tetracycline, chloramphenicol, rifampicin, kanamycin, vancomycin and gentamicin. The DNA G+C content of strain PPP2T was 39.5 mol%. Phylogenetic analysis revealed that strain PPP2T was related most closely to Clostridium sticklandii SR (approximately 90% 16S rRNA gene sequence similarity). On the basis of phylogenetic analysis and phenotypic characteristics, strain PPP2T is considered to represent a novel species of a new genus, for which the name Proteocatella sphenisci gen. nov., sp. nov. is proposed. The type strain of Proteocatella sphenisci is PPP2T (=ATCC BAA-755T=JCM 12175T=CIP 108034T).


Subject(s)
Feces/microbiology , Gram-Positive Endospore-Forming Bacteria/classification , Gram-Positive Endospore-Forming Bacteria/isolation & purification , Spheniscidae/microbiology , Spores, Bacterial/cytology , Amino Acids/metabolism , Anaerobiosis , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Base Composition , Carbohydrate Metabolism , Catalase/metabolism , Chile , Cluster Analysis , Cold Temperature , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fermentation , Gram-Positive Endospore-Forming Bacteria/genetics , Gram-Positive Endospore-Forming Bacteria/physiology , Locomotion , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism
13.
Int J Syst Evol Microbiol ; 59(Pt 7): 1798-804, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19578151

ABSTRACT

A novel obligately anaerobic, mesophilic, alkaliphilic spirochaete, strain ASpC2(T), was isolated from an anaerobic sediment of alkaline, hypersaline Owens Lake in California, USA. The Gram-negative cells are motile, helical in shape and 0.23 x 8.0-18.0 mum. Growth occurs within the following ranges: 13-41 degrees C, with optimal growth at 35 degrees C; 1-3 % (w/v) NaCl, with optimal growth at 2 % (w/v) NaCl; and pH 7.8-10.5, with optimal growth at pH 10.0. The novel isolate is strictly alkaliphilic and requires high concentrations of carbonate ions in the medium. It utilizes some sugars, some organic acids, some amino acids, Casamino acids, yeast extract and peptone. The main end products of glucose fermentation are CO(2) and acetate. Strain ASpC2(T) is resistant to kanamycin and rifampicin, but sensitive to ampicillin, chloramphenicol, gentamicin and tetracycline. The DNA G+C content of the new isolate is 43.8 mol%, its genome size is 6 x 10(8) Da and the melting temperature of its genomic DNA is 71 degrees C. DNA-DNA hybridization experiments demonstrated 46 % similarity with the phylogenetically most closely related species, Spirochaeta asiatica Z-7591(T). On the basis of physiological and molecular properties, the new isolate belongs taxonomically to a novel species within the genus Spirochaeta, for which the name Spirochaeta dissipatitropha sp. nov. is proposed (type strain, ASpC2(T)=ATCC BAA-1083(T)=JCM 12856(T)). S. dissipatitropha ASpC2(T) is the second strain in the genus (after Spirochaeta smaragdinae SEBR 4228(T)) that is able to use proteolysis products as the sole energy source, and additional tests have shown that other halo-alkaliphilic spirochaetes (Spirochaeta americana, Spirochaeta alkalica and Spirochaeta africana) are also able to grow on yeast extract alone; therefore, an emended description for the genus Spirochaeta is given.


Subject(s)
Fresh Water/microbiology , Geologic Sediments/microbiology , Spirochaeta/classification , Anaerobiosis , Bacterial Typing Techniques , Base Composition , California , DNA, Bacterial/analysis , Fatty Acids/analysis , Genes, rRNA , Genotype , Hydrogen-Ion Concentration , Molecular Sequence Data , Nucleic Acid Hybridization , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity , Spirochaeta/genetics , Spirochaeta/isolation & purification , Spirochaeta/physiology
14.
Extremophiles ; 12(6): 775-88, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18670731

ABSTRACT

The family B DNA polymerase gene of Thermococcus thioreducens, an archaeon recently isolated from the Rainbow hydrothermal vent field, was cloned and its protein product expressed, purified and characterized. The gene was found to encode a 1,311 amino acid chain including an intein sequence of 537 residues. Phylogenetic analysis revealed a predominantly vertical type of inheritance of the intein in the Thermococcales order. Primary sequence analysis of the mature protein (TthiPolB) showed significant sequence conservation among DNA polymerases in this family. The structural fold of TthiPolB was predicted against the known crystallographic structure of a family B DNA polymerase from Thermococcus gorgonarius, allowing regional domain assignments within the TthiPolB sequence. The recombinant TthiPolB was overexpressed in Escherichia coli and purified for biochemical characterization. Compared with other DNA polymerases from the Thermococcales order, TthiPolB was found to have moderate thermal stability and fidelity, and a high extension rate, consistent with an extremely low K(m) corresponding to the dNTP substrate. TthiPolB performed remarkably well in a wide range of PCR conditions, being faster, more stable and more accurate than many commonly used enzymes.


Subject(s)
DNA-Directed DNA Polymerase/isolation & purification , Thermococcus/enzymology , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA Primers , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , Enzyme Stability , Escherichia coli/genetics , Molecular Sequence Data , Polymerase Chain Reaction , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Thermococcus/genetics
15.
BMC Biotechnol ; 8: 44, 2008 Apr 29.
Article in English | MEDLINE | ID: mdl-18445293

ABSTRACT

BACKGROUND: Gene synthesis technologies are an important tool for structural biology projects, allowing increased protein expression through codon optimization and facilitating sequence alterations. Existing methods, however, can be complex and not always reproducible, prompting researchers to use commercial suppliers rather than synthesize genes themselves. RESULTS: A PCR-based gene synthesis method, referred to as SeqTBIO, is described to efficiently assemble the coding regions of two novel hyperthermophilic proteins, PAZ (Piwi/Argonaute/Zwille) domain, a siRNA-binding domain of an Argonaute protein homologue and a deletion mutant of a family A DNA polymerase (PolA). The gene synthesis procedure is based on sequential assembly such that homogeneous DNA products can be obtained after each synthesis step without extensive manipulation or purification requirements. Coupling the gene synthesis procedure to in vivo homologous recombination techniques allows efficient subcloning and site-directed mutagenesis for error correction. The recombinant proteins of PAZ and PolA were subsequently overexpressed in E. coli and used for protein crystallization. Crystals of both proteins were obtained and they were suitable for X-ray analysis. CONCLUSION: We demonstrate, by using PAZ and PolA as examples, the feasibility of integrating the gene synthesis, error correction and subcloning techniques into a non-automated gene to crystal pipeline such that genes can be designed, synthesized and implemented for recombinant expression and protein crystallization.


Subject(s)
Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/chemistry , Escherichia coli/physiology , Polymerase Chain Reaction/methods , Protein Engineering/methods , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Crystallization , Escherichia coli Proteins/genetics , Feasibility Studies , Recombinant Proteins/genetics
16.
Int J Syst Evol Microbiol ; 57(Pt 7): 1612-1618, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17625204

ABSTRACT

A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P(T), was isolated from 'black smoker' chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 degrees N, 33.9 degrees W). The cells of strain OGL-20P(T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within a pH range of 5.0-8.5 (optimum pH 7.0), an NaCl concentration range of 1-5 % (w/v) (optimum 3 %) and a temperature range of 55-94 degrees C (optimum 83-85 degrees C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, Fe(III) or nitrate. Proteolysis products (peptone, bacto-tryptone, Casamino acids and yeast extract) are utilized as substrates during sulfur reduction. Strain OGL-20P(T) is resistant to ampicillin, chloramphenicol, kanamycin and gentamicin, but sensitive to tetracycline and rifampicin. The G+C content of the DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20P(T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(T) represents a new separate species within the genus Thermococcus, for which we propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(T) (=JCM 12859(T)=DSM 14981(T)=ATCC BAA-394(T)).


Subject(s)
Hot Springs/microbiology , Seawater/microbiology , Sulfur/metabolism , Thermococcus/classification , Thermococcus/isolation & purification , Anaerobiosis , Anti-Bacterial Agents/pharmacology , Atlantic Ocean , Base Composition , DNA, Archaeal/chemistry , DNA, Archaeal/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/isolation & purification , Ferric Compounds/metabolism , Flagella , Genes, rRNA , Hydrogen-Ion Concentration , Locomotion , Molecular Sequence Data , Nitrates/metabolism , Nucleic Acid Hybridization , Oxidation-Reduction , Peptones/metabolism , Phylogeny , RNA, Archaeal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Sodium Chloride/metabolism , Temperature , Thermococcus/drug effects , Thermococcus/physiology
17.
Int J Syst Evol Microbiol ; 56(Pt 9): 2055-2062, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16957099

ABSTRACT

A novel, extremely psychrotolerant, facultative anaerobe, strain PmagG1(T), was isolated from guano of Magellanic penguins (Spheniscus magellanicus) collected in Chilean Patagonia. Gram-variable, motile cocci with a diameter of 1.3-2.0 mum were observed singularly or in pairs, short chains and irregular conglomerates. Growth occurred within the pH range 6.0-10.0, with optimum growth at pH 8.5. The temperature range for growth of the novel isolate was from -5 to 35 degrees C, with optimum growth at 28-30 degrees C. Strain PmagG1(T) did not require NaCl, as growth was observed in the presence of 0-6.5 % NaCl with optimum growth at 0.5 % (w/v). Strain PmagG1(T) was a catalase-negative chemo-organoheterotroph that used sugars and some organic acids as substrates. The metabolic end products were lactate, formate, acetate, ethanol and CO(2). Strain PmagG1(T) was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. The G+C content of its genomic DNA was 45.8 mol%. 16S rRNA gene sequence analysis showed 100 % similarity of strain PmagG1(T) with Trichococcus collinsii ATCC BAA-296(T), but DNA-DNA hybridization between them demonstrated relatedness values of <45+/-1 %. Another phylogenetically closely related species, Trichococcus pasteurii, showed 99.85 % similarity by 16S rRNA sequencing and DNA-DNA hybridization showed relatedness values of 47+/-1.5 %. Based on genotypic and phenotypic characteristics, the novel species Trichococcus patagoniensis sp. nov. is proposed, with strain PmagG1(T) (=ATCC BAA-756(T)=JCM 12176(T)=CIP 108035(T)) as the type strain.


Subject(s)
Bacteria, Anaerobic/isolation & purification , Spheniscidae/microbiology , Animals , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacterial Typing Techniques , Chile , Molecular Sequence Data , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
18.
Int J Syst Evol Microbiol ; 55(Pt 1): 473-478, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15653921

ABSTRACT

A novel, psychrotolerant, facultative anaerobe, strain FTR1T, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0.6-0.7 x 0.9-1.5 microm. Growth occurred within the pH range 6.5-9.5 with optimum growth at pH 7.3-7.5. The temperature range for growth of the novel isolate was 0-28 degrees C and optimum growth occurred at 24 degrees C. The novel isolate does not require NaCl; growth was observed between 0 and 5 % NaCl with optimum growth at 0.5 % (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTR1T was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16S rRNA gene sequence analysis showed 99.8 % similarity between strain FTR1T and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39+/-1.5 % relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTR1T (=ATCC BAA-754T=JCM 12174T=CIP 108033T) be assigned to the novel species Carnobacterium pleistocenium sp. nov.


Subject(s)
Fossils , Gram-Positive Asporogenous Rods/classification , Ice , Soil Microbiology , Alaska , Anaerobiosis , Bacterial Typing Techniques , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Freezing , Genes, rRNA , Gram-Positive Asporogenous Rods/genetics , Gram-Positive Asporogenous Rods/growth & development , Gram-Positive Asporogenous Rods/isolation & purification , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics
19.
Int J Syst Evol Microbiol ; 53(Pt 5): 1327-1332, 2003 Sep.
Article in English | MEDLINE | ID: mdl-13130014

ABSTRACT

A novel alkaliphilic, sulfate-reducing bacterium, strain MLF1(T), was isolated from sediments of soda Mono Lake, California. Gram-negative vibrio-shaped cells were observed, which were 0.6-0.7x1.2-2.7 micro m in size, motile by a single polar flagellum and occurred singly, in pairs or as short spirilla. Growth was observed at 15-48 degrees C (optimum, 37 degrees C), >1-7 % NaCl, w/v (optimum, 3 %) and pH 8.0-10.0 (optimum, 9.5). The novel isolate is strictly alkaliphilic, requires a high concentration of carbonate in the growth medium and is obligately anaerobic and catalase-negative. As electron donors, strain MLF1(T) uses hydrogen, formate and ethanol. Sulfate, sulfite and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The novel isolate is a lithoheterotroph and a facultative lithoautotroph that is able to grow on hydrogen without an organic source of carbon. Strain MLF1(T) is resistant to kanamycin and gentamicin, but sensitive to chloramphenicol and tetracycline. The DNA G+C content is 63.0 mol% (HPLC). DNA-DNA hybridization with the most closely related species, Desulfonatronum lacustre Z-7951(T), exhibited 51 % homology. Also, the genome size (1.6x10(9) Da) and T(m) value of the genomic DNA (71+/-2 degrees C) for strain MLF1(T) were significantly different from the genome size (2.1x10(9) Da) and T(m) value (63+/-2 degrees C) for Desulfonatronum lacustre Z-7951(T). On the basis of physiological and molecular properties, the isolate was considered to be a novel species of the genus Desulfonatronum, for which the name Desulfonatronum thiodismutans sp. nov. is proposed (the type strain is MLF1(T)=ATCC BAA-395(T)=DSM 14708(T)).


Subject(s)
Deltaproteobacteria/classification , Base Composition , California , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Deltaproteobacteria/genetics , Deltaproteobacteria/growth & development , Deltaproteobacteria/metabolism , Fatty Acids/analysis , Geologic Sediments/microbiology , Microscopy, Electron , Molecular Sequence Data , Phenotype , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism
20.
Int J Syst Evol Microbiol ; 53(Pt 3): 815-821, 2003 May.
Article in English | MEDLINE | ID: mdl-12807206

ABSTRACT

A novel, obligately anaerobic, mesophilic, haloalkaliphilic spirochaete, strain ASpG1(T), was isolated from sediments of the alkaline, hypersaline Mono Lake in California, USA. Cells of the Gram-negative strain were motile and spirochaete-shaped with sizes of 0.2-0.22 x 8-18 microm. Growth of the strain was observed between 10 and 44 degrees C (optimum 37 degrees C), in 2-12% (w/v) NaCl (optimum 3% NaCl) and between pH 8 and 10.5 (optimum pH 9.5). The novel strain was strictly alkaliphilic, required high concentrations of carbonates in the medium and was capable of utilizing D-glucose, fructose, maltose, sucrose, starch and D-mannitol. End products of glucose fermentation were H2, acetate, ethanol and formate. Strain ASpG(T) was resistant to kanamycin and rifampicin, but sensitive to gentamicin, tetracycline and chloramphenicol. The G + C content of its DNA was 58.5 mol%. DNA-DNA hybridization analysis of strain ASpG1(T) with its most closely related species, Spirochaeta alkalica Z-7491(T), revealed a hybridization value of only 48.7%. On the basis of its physiological and molecular properties, strain ASpG1(T) appears to represent a novel species of the genus Spirochaeta, for which the name Spirochaeta americana is proposed (type strain ASpG1(T) =ATCC BAA-392(T) = DSM 14872(T)).


Subject(s)
Sodium Chloride/metabolism , Spirochaeta/classification , Spirochaeta/growth & development , Water Microbiology , Anaerobiosis , Bacterial Typing Techniques , Base Composition , California , Culture Media , DNA, Ribosomal/analysis , Hydrogen-Ion Concentration , Molecular Sequence Data , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spirochaeta/genetics , Spirochaeta/isolation & purification , Spirochaeta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...