Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
4.
Sci Data ; 7(1): 115, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286335

ABSTRACT

A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.

5.
Proc Natl Acad Sci U S A ; 116(13): 5985-5990, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30858312

ABSTRACT

Climate variations in the North Atlantic region can substantially impact surrounding continents. Notably, the Younger Dryas chronozone was named for the ecosystem effects of abrupt changes in the region at circa (ca.) 12.9-11.7 ka (millennia before 1950 AD). Holocene variations since then, however, have been hard to diagnose, and the responsiveness of terrestrial ecosystems continues to be debated. Here, we show that Holocene climate variations had spatial patterns consistent with changes in Atlantic overturning and repeatedly steepened the temperature gradient between Nova Scotia and Greenland since >8 ka. The multicentury changes correlated with hydrologic and vegetation changes in the northeast United States, including when an enhanced temperature gradient coincided with subregional droughts indicated by water-level changes at multiple coastal lakes at 4.9-4.6, 4.2-3.9, 2.8-2.1, and 1.3-1.2 ka. We assessed the variability and its effects by replicating signals across sites, using converging evidence from multiple methods, and applying forward models of the systems involved. We evaluated forest responses in the northeast United States and found that they tracked the regional climate shifts including the smallest magnitude (∼5% or 50 mm) changes in effective precipitation. Although a long-term increase in effective precipitation of >45% (>400 mm) could have prevented ecological communities from equilibrating to the continuously changing conditions, our comparisons confirm stable vegetation-climate relationships and support the use of fossil pollen records for quantitative paleoclimate reconstruction. Overall, the network of records indicates that centennial climate variability has repeatedly affected the North Atlantic region with predictable consequences.

6.
Nature ; 554(7690): 92-96, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29388952

ABSTRACT

Cooling during most of the past two millennia has been widely recognized and has been inferred to be the dominant global temperature trend of the past 11,700 years (the Holocene epoch). However, long-term cooling has been difficult to reconcile with global forcing, and climate models consistently simulate long-term warming. The divergence between simulations and reconstructions emerges primarily for northern mid-latitudes, for which pronounced cooling has been inferred from marine and coastal records using multiple approaches. Here we show that temperatures reconstructed from sub-fossil pollen from 642 sites across North America and Europe closely match simulations, and that long-term warming, not cooling, defined the Holocene until around 2,000 years ago. The reconstructions indicate that evidence of long-term cooling was limited to North Atlantic records. Early Holocene temperatures on the continents were more than two degrees Celsius below those of the past two millennia, consistent with the simulated effects of remnant ice sheets in the climate model Community Climate System Model 3 (CCSM3). CCSM3 simulates increases in 'growing degree days'-a measure of the accumulated warmth above five degrees Celsius per year-of more than 300 kelvin days over the Holocene, consistent with inferences from the pollen data. It also simulates a decrease in mean summer temperatures of more than two degrees Celsius, which correlates with reconstructed marine trends and highlights the potential importance of the different subseasonal sensitivities of the records. Despite the differing trends, pollen- and marine-based reconstructions are correlated at millennial-to-centennial scales, probably in response to ice-sheet and meltwater dynamics, and to stochastic dynamics similar to the temperature variations produced by CCSM3. Although our results depend on a single source of palaeoclimatic data (pollen) and a single climate-model simulation, they reinforce the notion that climate models can adequately simulate climates for periods other than the present-day. They also demonstrate that amplified warming in recent decades increased temperatures above the mean of any century during the past 11,000 years.


Subject(s)
Climate , Models, Theoretical , Temperature , Europe , Fossils , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, Ancient , Ice Cover , North America , Pollen , Seasons , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...