Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 19(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34356821

ABSTRACT

Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.


Subject(s)
Collagen/drug effects , Protein Hydrolysates/pharmacology , Salmon , Wound Healing/drug effects , Animals , Chemokines/metabolism , Dietary Supplements , Male , Mice , Mice, Inbred C57BL , Models, Animal , Protein Hydrolysates/administration & dosage
2.
Mar Drugs ; 19(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064922

ABSTRACT

Metabolic syndrome-related diseases affect millions of people worldwide. It is well established that changes in nutritional habits and lifestyle can improve or prevent metabolic-related pathologies such as type-2 diabetes and obesity. Previous reports have shown that nutritional supplements have the capacity to limit glucose intolerance and suppress diabetes development. In this study, we investigated the effect of dietary supplementation with fish-derived extracts on obesity and type 2 diabetes and their impact on gut microbial composition. We showed that nutritional supplements containing Fish Complex (FC), Fish Complex combined with Cod Powder (FC + CP), or Cod Powder combined with Collagen (CP + C) improved glucose intolerance, independent of abdominal fat accumulation, in a mouse model of diet-induced obesity and type 2 diabetes. In addition, collagen-containing supplements distinctly modulate the gut microbiome in high-fat induced obesity in mice. Our results suggest that fish-derived supplements suppress diet-induced type 2 diabetes, which may be partly mediated through changes in the gut microbiome. Thus, fish-derived supplements and particularly the ones containing fish collagen have potential beneficial properties as dietary supplements in managing type 2 diabetes and metabolic syndrome via modulation of the gut microbiome.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements , Fishes , Gastrointestinal Microbiome/drug effects , Hypoglycemic Agents/pharmacology , Obesity , Tissue Extracts/pharmacology , Abdominal Fat/drug effects , Animals , Body Weight/drug effects , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/complications , Diet, High-Fat/adverse effects , Dietary Supplements/microbiology , Disease Models, Animal , Female , Glucose Intolerance/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin Resistance , Leptin/metabolism , Mice, Inbred C57BL , Obesity/chemically induced , Obesity/complications , Tissue Extracts/isolation & purification , Tissue Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...