Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(12): 102632, 2022 12.
Article in English | MEDLINE | ID: mdl-36273583

ABSTRACT

We recently reported the identification of a de novo single nucleotide variant in exon 9 of CACNA1C associated with prolonged repolarization interval. Recombinant expression of the glycine to arginine variant at position 419 produced a gain in the function of the L-type CaV1.2 channel with increased peak current density and activation gating but without significant decrease in the inactivation kinetics. We herein reveal that these properties are replicated by overexpressing calmodulin (CaM) with CaV1.2 WT and are reversed by exposure to the CaM antagonist W-13. Phosphomimetic (T79D or S81D), but not phosphoresistant (T79A or S81A), CaM surrogates reproduced the impact of CaM WT on the function of CaV1.2 WT. The increased channel activity of CaV1.2 WT following overexpression of CaM was found to arise in part from enhanced cell surface expression. In contrast, the properties of the variant remained unaffected by any of these treatments. CaV1.2 substituted with the α-helix breaking proline residue were more reluctant to open than CaV1.2 WT but were upregulated by phosphomimetic CaM surrogates. Our results indicate that (1) CaM and its phosphomimetic analogs promote a gain in the function of CaV1.2 and (2) the structural properties of the first intracellular linker of CaV1.2 contribute to its CaM-induced modulation. We conclude that the CACNA1C clinical variant mimics the increased activity associated with the upregulation of CaV1.2 by Ca2+-CaM, thus maintaining a majority of channels in a constitutively active mode that could ultimately promote ventricular arrhythmias.


Subject(s)
Arrhythmias, Cardiac , Calmodulin , Humans , Calmodulin/genetics , Calmodulin/metabolism , Kinetics , Protein Binding , Calcium Channels, L-Type/metabolism , Calcium/metabolism
3.
Biochim Biophys Acta Biomembr ; 1862(11): 183439, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32814116

ABSTRACT

Eukaryote voltage-gated Ca2+ channels of the CaV2 channel family are hetero-oligomers formed by the pore-forming CaVα1 protein assembled with auxiliary CaVα2δ and CaVß subunits. CaVß subunits are formed by a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain connected through a HOOK domain. The GK domain binds a conserved cytoplasmic region of the pore-forming CaVα1 subunit referred as the "AID". Herein we explored the phylogenetic and functional relationship between CaV channel subunits in distant eukaryotic organisms by investigating the function of a MAGUK protein (XM_004990081) cloned from the choanoflagellate Salpingoeca rosetta (Sro). This MAGUK protein (Sroß) features SH3 and GK structural domains with a 25% primary sequence identity to mammalian CaVß. Recombinant expression of its cDNA with mammalian high-voltage activated Ca2+ channel CaV2.3 in mammalian HEK cells produced robust voltage-gated inward Ca2+ currents with typical activation and inactivation properties. Like CaVß, Sroß prevents fast degradation of total CaV2.3 proteins in cycloheximide assays. The three-dimensional homology model predicts an interaction between the GK domain of Sroß and the AID motif of the pore-forming CaVα1 protein. Substitution of AID residues Trp (W386A) and Tyr (Y383A) significantly impaired co-immunoprecipitation of CaV2.3 with Sroß and functional upregulation of CaV2.3 currents. Likewise, a 6-residue deletion within the GK domain of Sroß, similar to the locus found in mammalian CaVß, significantly reduced peak current density. Altogether our data demonstrate that an ancestor MAGUK protein reconstitutes the biophysical and molecular features responsible for channel upregulation by mammalian CaVß through a minimally conserved molecular interface.


Subject(s)
Calcium Channels, R-Type/chemistry , Cation Transport Proteins/chemistry , Guanylate Kinases/chemistry , Protozoan Proteins/chemistry , Amino Acid Substitution , Calcium Channels, R-Type/genetics , Calcium Channels, R-Type/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Guanylate Kinases/genetics , Guanylate Kinases/metabolism , HEK293 Cells , Humans , Mutation, Missense , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
4.
J Membr Biol ; 238(1-3): 21-31, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21082167

ABSTRACT

The pore-forming domain of Bacillus thuringiensis insecticidal Cry toxins is formed of seven amphipathic α-helices. Because pore formation is thought to involve conformational changes within this domain, the possible role of its interhelical loops in this crucial step was investigated with Cry9Ca double mutants, which all share the previously characterized R164A mutation, using a combination of homology modeling, bioassays and electrophysiological measurements. The mutations either introduced, neutralized or reversed an electrical charge carried by a single residue of one of the domain I loops. The ability of the 28 Cry9Ca double mutants to depolarize the apical membrane of freshly isolated Manduca sexta larval midguts was tested in the presence of either midgut juice or a cocktail of protease inhibitors because these conditions had been shown earlier to greatly enhance pore formation by Cry9Ca and its R164A single-site mutant. Most mutants retained toxicity toward neonate larvae and a pore-forming ability in the electrophysiological assay, which were comparable to those of their parental toxin. In contrast, mutants F130D, L186D and V189D were very poorly toxic and practically inactive in vitro. On the other hand, mutant E129A depolarized the midgut membrane efficiently despite a considerably reduced toxicity, and mutant Q192E displayed a reduced depolarizing ability while conserving a near wild-type toxicity. These results suggest that the conditions found in the insect midgut, including high ionic strength, contribute to minimizing the influence of surface charges on the ability of Cry9Ca and probably other B. thuringiensis toxins to form pores within their target membrane.


Subject(s)
Bacterial Proteins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Mutation , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/pharmacology , Electrophysiology , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , In Vitro Techniques , Larva/drug effects , Manduca/drug effects , Membrane Potentials/drug effects , Mutagenesis, Site-Directed , Protein Structure, Secondary , Structure-Activity Relationship
5.
J Invertebr Pathol ; 104(3): 203-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20399787

ABSTRACT

The pore-forming ability of the Bacillus thuringiensis toxin Cry9Ca, its two single-site mutants R164A and R164K, and the 55-kDa fragment resulting from its proteolytic cleavage at R164 was evaluated under a variety of experimental conditions using an electrophysiological assay. All four toxin preparations depolarized the apical membrane of freshly isolated third-instar Manduca sexta midguts bathing in a solution containing 122 mM KCl at pH 10.5, but the 55-kDa fragment was considerably more active than Cry9Ca and its mutants. The activity of the latter toxins was greatly enhanced, however, when the experiments were conducted in the presence of fifth-instar M. sexta midgut juice. This effect was also observed after midgut juice proteins had been denatured by heating at 95 degrees C or after inorganic ions and small molecules had been removed from the midgut juice by extensive dialysis. A similar stimulation of toxin activity was also observed when the experiments were carried out in the presence of the lipids extracted from an equivalent volume of midgut juice. Depolarization of the cell membrane was also greatly enhanced, in the absence of midgut juice, by the addition of a cocktail of water-soluble protease inhibitors. These results indicate that, depending on the cleavage site and on the experimental conditions used, further proteolysis of the activated Cry9Ca toxin can either stimulate or be detrimental to its activity and that M. sexta midgut juice probably contains protease inhibitors that could play a major role in the activity of B. thuringiensis toxins in the insect midgut.


Subject(s)
Bacillus thuringiensis/physiology , Bacterial Proteins/pharmacology , Digestive System/drug effects , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Insecticides/pharmacology , Pore Forming Cytotoxic Proteins/pharmacology , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , Cell Membrane/drug effects , Digestive System/metabolism , Endopeptidases/metabolism , Endotoxins/metabolism , Gastric Juice/metabolism , Hemolysin Proteins/metabolism , Insecticides/metabolism , Larva/drug effects , Larva/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , Pest Control, Biological , Pore Forming Cytotoxic Proteins/metabolism , Protease Inhibitors/pharmacology
6.
J Biol Chem ; 283(5): 2986-96, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18055461

ABSTRACT

Water and solute transport across the plasma membrane of cells is a crucial biological function that is mediated mainly by aquaporins and aquaglyceroporins. The regulation of these membrane proteins is still incompletely understood. Using the male reproductive tract as a model system in which water and glycerol transport are critical for the establishment of fertility, we now report a novel pathway for the regulation of aquaporin 9 (AQP9) permeability. AQP9 is the major aquaglyceroporin of the epididymis, liver, and peripheral leukocytes, and its COOH-terminal portion contains a putative PDZ binding motif (SVIM). Here we show that NHERF1, cystic fibrosis transmembrane conductance regulator (CFTR), and AQP9 co-localize in the apical membrane of principal cells of the epididymis and the vas deferens, and that both NHERF1 and CFTR co-immunoprecipitate with AQP9. Overlay assays revealed that AQP9 binds to both the PDZ1 and PDZ2 domains of NHERF1, with an apparently higher affinity for PDZ1 versus PDZ2. Pull-down assays showed that the AQP9 COOH-terminal SVIM motif is essential for interaction with NHERF1. Functional assays on isolated tubules perfused in vitro showed a high permeability of the apical membrane to glycerol, which is inhibited by the AQP9 inhibitor, phloretin, and is markedly activated by cAMP. The CFTR inhibitors DPC, GlyH-101 and CFTRinh-172 all significantly reduced the cAMP-activated glycerol-induced cell swelling. We propose that CFTR is an important regulator of AQP9 and that the interaction between AQP9, NHERF1, and CFTR may facilitate the activation of AQP9 by cAMP.


Subject(s)
Aquaporins/metabolism , Cyclic AMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Amino Acid Sequence , Animals , Aquaporins/chemistry , Aquaporins/genetics , Binding Sites , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epididymis/metabolism , Fertility/physiology , In Vitro Techniques , Male , Molecular Sequence Data , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/genetics , Vas Deferens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...