Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38758370

ABSTRACT

PURPOSE: Here, we evaluate a PET displacement model with a Single-step and Numerical solution in healthy individuals using the synaptic vesicle glycoprotein (SV2A) PET-tracer [11C]UCB-J and the anti-seizure medication levetiracetam (LEV). We aimed to (1) validate the displacement model by comparing the brain LEV-SV2A occupancy from a single PET scan with the occupancy derived from two PET scans and the Lassen plot and (2) determine the plasma LEV concentration-SV2A occupancy curve in healthy individuals. METHODS: Eleven healthy individuals (five females, mean age 35.5 [range: 25-47] years) underwent two 120-min [11C]UCB-J PET scans where an LEV dose (5-30 mg/kg) was administered intravenously halfway through the first PET scan to partially displace radioligand binding to SV2A. Five individuals were scanned twice on the same day; the remaining six were scanned once on two separate days, receiving two identical LEV doses. Arterial blood samples were acquired to determine the arterial input function and plasma LEV concentrations. Using the displacement model, the SV2A-LEV target engagement was calculated and compared with the Lassen plot method. The resulting data were fitted with a single-site binding model. RESULTS: SV2A occupancies and VND estimates derived from the displacement model were not significantly different from the Lassen plot (p = 0.55 and 0.13, respectively). The coefficient of variation was 14.6% vs. 17.3% for the Numerical and the Single-step solution in Bland-Altman comparisons with the Lassen plot. The average half maximal inhibitory concentration (IC50), as estimated from the area under the curve of the plasma LEV concentration, was 12.5 µg/mL (95% CI: 5-25) for the Single-Step solution, 11.8 µg/mL (95% CI: 4-25) for the Numerical solution, and 6.3 µg/mL (95% CI: 0.08-21) for the Lassen plot. Constraining Emax to 100% did not significantly improve model fits. CONCLUSION: Plasma LEV concentration vs. SV2A occupancy can be determined in humans using a single PET scan displacement model. The average concentration of the three computed IC50 values ranges between 6.3 and 12.5 µg/mL. The next step is to use the displacement model to evaluate LEV occupancy and corresponding plasma concentrations in relation to treatment efficacy. CLINICAL TRIAL REGISTRATION: NCT05450822. Retrospectively registered 5 July 2022 https://clinicaltrials.gov/ct2/results? term=NCT05450822&Search=Search.

2.
Eur Neuropsychopharmacol ; 50: 121-132, 2021 09.
Article in English | MEDLINE | ID: mdl-34246868

ABSTRACT

The emerging novel therapeutic psilocybin produces psychedelic effects via engagement of cerebral serotonergic targets by psilocin (active metabolite). The serotonin 2A receptor critically mediates these effects by altering distributed neural processes that manifest as increased entropy, reduced functional connectivity (FC) within discrete brain networks (i.e., reduced integrity) and increased FC between networks (i.e., reduced segregation). Reduced integrity of the default mode network (DMN) is proposed to play a particularly prominent role in psychedelic phenomenology, including perceived ego-dissolution. Here, we investigate the effects of a psychoactive peroral dose of psilocybin (0.2-0.3 mg/kg) on plasma psilocin level (PPL), subjective drug intensity (SDI) and their association in fifteen healthy individuals. We further evaluate associations between these measures and resting-state FC, measured with functional magnetic resonance imaging, acquired over the course of five hours after psilocybin administration. We show that PPL and SDI correlate negatively with measures of network integrity (including DMN) and segregation, both spatially constrained and unconstrained. We also find that the executive control network and dorsal attention network desegregate, increasing connectivity with other networks and throughout the brain as a function of PPL and SDI. These findings provide direct evidence that psilocin critically shapes the time course and magnitude of changes in the cerebral functional architecture and subjective experience following psilocybin administration. Our findings provide novel insight into the neurobiological mechanisms underlying profound perceptual experiences evoked by this emerging transnosological therapeutic and implicate the expression of network integrity and segregation in the psychedelic experience and consciousness.


Subject(s)
Hallucinogens , Psilocybin , Brain , Humans , Magnetic Resonance Imaging , Psilocybin/analogs & derivatives , Psilocybin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...