Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 2(9): 974-988, 2020 09.
Article in English | MEDLINE | ID: mdl-32943786

ABSTRACT

Proinflammatory macrophages are key in the development of obesity. In addition, reactive oxygen species (ROS), which activate the Fgr tyrosine kinase, also contribute to obesity. Here we show that ablation of Fgr impairs proinflammatory macrophage polarization while preventing high-fat diet (HFD)-induced obesity in mice. Systemic ablation of Fgr increases lipolysis and liver fatty acid oxidation, thereby avoiding steatosis. Knockout of Fgr in bone marrow (BM)-derived cells is sufficient to protect against insulin resistance and liver steatosis following HFD feeding, while the transfer of Fgr-expressing BM-derived cells reverts protection from HFD feeding in Fgr-deficient hosts. Scavenging of mitochondrial peroxides is sufficient to prevent Fgr activation in BM-derived cells and HFD-induced obesity. Moreover, Fgr expression is higher in proinflammatory macrophages and correlates with obesity traits in both mice and humans. Thus, our findings reveal the mitochondrial ROS-Fgr kinase as a key regulatory axis in proinflammatory adipose tissue macrophage activation, diet-induced obesity, insulin resistance and liver steatosis.


Subject(s)
Diet, High-Fat , Inflammation/physiopathology , Macrophage Activation , Obesity/enzymology , Obesity/physiopathology , Proto-Oncogene Proteins/metabolism , src-Family Kinases/metabolism , Adipose Tissue, White/metabolism , Animals , Bone Marrow Cells/metabolism , Fatty Liver/genetics , Fatty Liver/physiopathology , Insulin Resistance , Interleukin-1beta/biosynthesis , Magnetic Resonance Imaging , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Liver/metabolism , Obesity/genetics , Proto-Oncogene Proteins/genetics , Reactive Oxygen Species/metabolism , src-Family Kinases/genetics
2.
Sci Adv ; 6(26): eaba7509, 2020 06.
Article in English | MEDLINE | ID: mdl-32637615

ABSTRACT

Mitochondrial respiratory complexes assemble into supercomplexes (SC). Q-respirasome (III2 + IV) requires the supercomplex assembly factor (SCAF1) protein. The role of this factor in the N-respirasome (I + III2 + IV) and the physiological role of SCs are controversial. Here, we study C57BL/6J mice harboring nonfunctional SCAF1, the full knockout for SCAF1, or the wild-type version of the protein and found that exercise performance is SCAF1 dependent. By combining quantitative data-independent proteomics, 2D Blue native gel electrophoresis, and functional analysis of enriched respirasome fractions, we show that SCAF1 confers structural attachment between III2 and IV within the N-respirasome, increases NADH-dependent respiration, and reduces reactive oxygen species (ROS). Furthermore, the expression of AOX in cells and mice confirms that CI-CIII superassembly segments the CoQ in two pools and modulates CI-NADH oxidative capacity.

SELECTION OF CITATIONS
SEARCH DETAIL
...