Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 18540, 2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37899369

ABSTRACT

The application of different types of microwave resonators for sensing cracks in metallic structures has been subject of many studies. While most studies have been focused on improving the sensitivity of planar crack sensors, the theoretical foundation of the topic has not been treated in much detail. The major objective of this study is to perform an exhaustive study of the principles and theoretical foundations for crack sensing based on planar microwave resonators, especially defective ground structures (DGS) including complementary split ring resonators (CSRRs). The analysis is carried out from the equivalent circuit model as well as the electromagnetic (EM) field perspectives, and guidelines for the design of crack sensors with high sensitivity are developed. Numerical and experimental validation of the provided theoretical analysis is another aim of this article. With this aim, the developed guidelines are used to design a crack sensor based on a single-ring CSRR. It is shown that the sensitivity of the proposed sensor is almost three times higher than the sensitivity of a conventional double-ring CSRR. Moreover, it is demonstrated that folded dumbbell-shape DGS resonators can be used to achieve even higher sensitivities. The CSRR-based crack sensors presented in this study and other studies available in the literature are only sensitive to cracks with a specific orientation. To address this limitation, a modified version of the DGS is proposed to sense cracks with arbitrary orientations at the cost of lower sensitivity. The performance of all the presented sensors is validated through EM simulation, equivalent circuit model extraction, and measurement of the fabricated prototypes.

2.
Sensors (Basel) ; 23(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37448086

ABSTRACT

This research explores the application of an artificial intelligence (AI)-assisted approach to enhance the selectivity of microwave sensors used for liquid mixture sensing. We utilized a planar microwave sensor comprising two coupled rectangular complementary split-ring resonators operating at 2.45 GHz to establish a highly sensitive capacitive region. The sensor's quality factor was markedly improved from 70 to approximately 2700 through the incorporation of a regenerative amplifier to compensate for losses. A deep neural network (DNN) technique is employed to characterize mixtures of methanol, ethanol, and water, using the frequency, amplitude, and quality factor as inputs. However, the DNN approach is found to be effective solely for binary mixtures, with a maximum concentration error of 4.3%. To improve selectivity for ternary mixtures, we employed a more sophisticated machine learning algorithm, the convolutional neural network (CNN), using the entire transmission response as the 1-D input. This resulted in a significant improvement in selectivity, limiting the maximum percentage error to just 0.7% (≈6-fold accuracy enhancement).


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Algorithms , Machine Learning , Amplifiers, Electronic
3.
Nature ; 617(7960): 265-270, 2023 05.
Article in English | MEDLINE | ID: mdl-37165240

ABSTRACT

Superposition, entanglement and non-locality constitute fundamental features of quantum physics. The fact that quantum physics does not follow the principle of local causality1-3 can be experimentally demonstrated in Bell tests4 performed on pairs of spatially separated, entangled quantum systems. Although Bell tests, which are widely regarded as a litmus test of quantum physics, have been explored using a broad range of quantum systems over the past 50 years, only relatively recently have experiments free of so-called loopholes5 succeeded. Such experiments have been performed with spins in nitrogen-vacancy centres6, optical photons7-9 and neutral atoms10. Here we demonstrate a loophole-free violation of Bell's inequality with superconducting circuits, which are a prime contender for realizing quantum computing technology11. To evaluate a Clauser-Horne-Shimony-Holt-type Bell inequality4, we deterministically entangle a pair of qubits12 and perform fast and high-fidelity measurements13 along randomly chosen bases on the qubits connected through a cryogenic link14 spanning a distance of 30 metres. Evaluating more than 1 million experimental trials, we find an average S value of 2.0747 ± 0.0033, violating Bell's inequality with a P value smaller than 10-108. Our work demonstrates that non-locality is a viable new resource in quantum information technology realized with superconducting circuits with potential applications in quantum communication, quantum computing and fundamental physics15.

4.
Sensors (Basel) ; 22(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36146297

ABSTRACT

Planar microwave sensors have become increasing developed in recent decades, especially in material characterization (solid/liquid) as they provide regions highly sensitive to the surrounding medium. However, when it comes to deciphering the content of practical biological analytes or chemical components inside a host medium, even higher sensitivities are required due to their minute concentrations. This review article presents a comprehensive outlook on various methodologies to enhance sensitivity (e.g., coupling resonators, channel embedding, analyte immobilization, resonator pattern recognition, use of phase variation, using coupled line section, and intermodulation products), resolution (active sensors, differential measurements), and robustness (using machine learning) of arbitrary sensors of interest. Some of the most practical approaches are presented with prototype examples, and the main applications of incorporating such procedures are reported. Sensors with which the proposed techniques are implemented exhibit higher performance for high-end and real-life use.

5.
Sensors (Basel) ; 22(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35746141

ABSTRACT

In this paper, we report two different strategies to enhance the data density in electromagnetic encoders with synchronous reading. One approach uses a periodic chain of rectangular metallic patches (clock chain) that determines the encoder velocity, and dictates the instants of time for retrieving the bits of the identification (ID) code. However, contrary to previous electromagnetic encoders, the ID is inferred at both the rising and the falling edges of the clock signal generated by the clock chain. Moreover, the bits of information are not given by the presence or absence of metallic patches at their predefined positions in the so-called ID code chain. With this novel encoding system, a bit state corresponding to a certain instant of time is identical to the previous bit state, unless there is a change in the envelope function of the ID code signal, determined by the additional non-periodic ID code chain. The other encoding strategy utilizes a single chain of C-shaped resonators, and encoding is achieved by considering four different resonator dimensions, corresponding to four states and, hence, to two bits per resonator of the chain. Thus, with these two strategies, the data density is twice the one achievable in previously reported synchronous electromagnetic encoders.

6.
Sensors (Basel) ; 22(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35271191

ABSTRACT

This paper presents, for the first time, an absolute linear electromagnetic encoder consisting of a rubber belt with two chains of screen-printed metallic inclusions (rectangular patches). The position, velocity, and direction of the belt (the moving part) is determined by detecting the inclusions when they cross the stator (the static part). The stator is a microstrip line loaded with three complementary split ring resonators (CSRRs), resonant elements exhibiting a resonance frequency perturbed by the presence of inclusions on top of them (contactless). The line is fed by three harmonic signals tuned to the resonance frequencies of the CSRRs. Such signals are generated by a voltage-controlled oscillator (VCO) managed by a microcontroller. The sensed data are retrieved from the pulses contained in the envelope functions of the respective amplitude modulated (AM) signals (caused by the belt motion) generated at the output port of the line. One of the signals provides the absolute belt position, determined by one of the chains, the encoded one. The information relative to the velocity and motion direction is contained in the other AM signals generated by the motion of the other chain, periodic, and thereby, uncoded. The spatial resolution of the system, a figure of merit, is 4 mm. Special emphasis is devoted to the printing process of the belt inclusions.

7.
Sensors (Basel) ; 21(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34960428

ABSTRACT

Microstrip transmission lines loaded with dumbbell defect-ground-structure (DB-DGS) resonators transversally oriented have been exhaustively used in microwave circuits and sensors. Typically, these structures have been modelled by means of a parallel LC resonant tank series connected to the host line. However, the inductance and capacitance of such model do not have a physical meaning, since this model is inferred by transformation of a more realistic model, where the DB-DGS resonator, described by means of a resonant tank with inductance and capacitance related to the geometry of the DB-DGS, is magnetically coupled to the host line. From parameter extraction, the circuit parameters of both models are obtained by considering the DB-DGS covered with semi-infinite materials with different dielectric constant. The extracted parameters are coherent and reveal that the general assumption of considering the simple LC resonant tank series-connected to the line to describe the DB-DGS-loaded line is reasonable with some caution. The implications on the sensitivity, when the structure is devoted to operating as a permittivity sensor, are discussed.

8.
Sensors (Basel) ; 21(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924501

ABSTRACT

Optical and magnetic linear/rotary encoders are well-known systems traditionally used in industry for the accurate measurement of linear/angular displacements and velocities. Recently, a different approach for the implementation of linear/rotary encoders has been proposed. Such an approach uses electromagnetic signals, and the working principle of these electromagnetic encoders is very similar to the one of optical encoders, i.e., pulse counting. Specifically, a transmission line based structure fed by a harmonic signal tuned to a certain frequency, the stator, is perturbed by encoder motion. Such encoder consists in a linear or circular chain (or chains) of inclusions (metallic, dielectric, or apertures) on a dielectric substrate, rigid or flexible, and made of different materials, including plastics, organic materials, rubber, etc. The harmonic signal is amplitude modulated by the encoder chain, and the envelope function contains the information relative to the position and velocity. The paper mainly focuses on linear encoders based on metallic and dielectric inclusions. Moreover, it is shown that synchronous electromagnetic encoders, able to provide the quasi-absolute position (plus the velocity and direction of motion in some cases), can be implemented. Several prototype examples are reviewed in the paper, including encoders implemented by means of additive process, such as 3D printed and screen-printed encoders.

9.
Sensors (Basel) ; 21(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672180

ABSTRACT

Planar phase-variation microwave sensors have attracted increasing interest in recent years since they combine the advantages of planar technology (including low cost, low profile, and sensor integration with the associated circuitry for post-processing and communication purposes, among others) and the possibility of operation at a single frequency (thereby reducing the costs of the associated electronics). This paper reviews and compares three different strategies for sensitivity improvement in such phase-variation sensors (devoted to material characterization). The considered approaches include line elongation (through meandering), dispersion engineering (by considering slow-wave artificial transmission lines), and reflective-mode sensors based on step-impedance open-ended lines. It is shown that unprecedented sensitivities compatible with small sensing regions are achievable with the latter approach.

10.
Sensors (Basel) ; 20(21)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142909

ABSTRACT

In this paper, reflective-mode phase-variation sensors based on open-ended stepped-impedance transmission lines with optimized sensitivity for their use as defect detectors and dielectric constant sensors are reported. The sensitive part of the sensors consists of either a 90° high-impedance or a 180° low-impedance open-ended sensing line. To optimize the sensitivity, such a sensing line is cascaded to a 90° transmission line section with either low or high characteristic impedance, resulting in a stepped-impedance transmission line configuration. For validation purposes, two different sensors are designed and fabricated. One of the sensors is implemented by means of a 90° high impedance (85 Ω) open-ended sensing line cascaded to a 90° low impedance (15 Ω) transmission line section. The other sensor consists of a 180° 15-Ω open-ended sensing line cascaded to a 90° 85-Ω line. Sensitivity optimization for the measurement of dielectric constants in the vicinity of that corresponding to the Rogers RO4003C substrate (i.e., with dielectric constant 3.55) is carried out. The functionality as a defect detector is demonstrated by measuring the phase-variation in samples consisting of the uncoated Rogers RO4003C substrate (the reference sample) with arrays of holes of different densities.

11.
Sensors (Basel) ; 20(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867115

ABSTRACT

In this paper, 3D-printed electromagnetic (or microwave) encoders with synchronous reading based on permittivity contrast, and devoted to the measurement of displacements and velocities, are reported for the first time. The considered encoders are based on two chains of linearly shaped apertures made on a 3D-printed high-permittivity dielectric material. One such aperture chain contains the identification (ID) code, whereas the other chain provides the clock signal. Synchronous reading is necessary in order to determine the absolute position if the velocity between the encoder and the sensitive part of the reader is not constant. Such absolute position can be determined as long as the whole encoder is encoded with the so-called de Bruijn sequence. For encoder reading, a splitter/combiner structure with each branch loaded with a series gap and a slot resonator (each one tuned to a different frequency) is considered. Such a structure is able to detect the presence of the apertures when the encoder is displaced, at short distance, over the slots. Thus, by injecting two harmonic signals, conveniently tuned, at the input port of the splitter/combiner structure, two amplitude modulated (AM) signals are generated by tag motion at the output port of the sensitive part of the reader. One of the AM envelope functions provides the absolute position, whereas the other one provides the clock signal and the velocity of the encoder. These synchronous 3D-printed all-dielectric encoders based on permittivity contrast are a good alternative to microwave encoders based on metallic inclusions in those applications where low cost as well as major robustness against mechanical wearing and aging effects are the main concerns.

12.
Sensors (Basel) ; 20(12)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549274

ABSTRACT

This paper highlights interest in the implementation of microwave sensors based on resonant elements, the subject of a special issue in the journal. A classification of these sensors on the basis of the operating principle is presented, and the advantages and limitations of the different sensor types are pointed out. Finally, the paper summarizes the different contributions to the special issue.

13.
Phys Rev Lett ; 124(17): 170401, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412288

ABSTRACT

We describe a comagnetometer employing the f=1 and f=2 ground state hyperfine manifolds of a ^{87}Rb spinor Bose-Einstein condensate as colocated magnetometers. The hyperfine manifolds feature nearly opposite gyromagnetic ratios and thus the sum of their precession angles is only weakly coupled to external magnetic fields, while being highly sensitive to any effect that rotates both manifolds in the same way. The f=1 and f=2 transverse magnetizations and azimuth angles are independently measured by nondestructive Faraday rotation probing, and we demonstrate a 44.0(8) dB common-mode rejection in good agreement with theory. We show how the magnetometer coherence time can be extended to ∼1 s, by using spin-dependent interactions to inhibit hyperfine relaxing collisions between f=2 atoms. The technique could be used in high sensitivity searches for new physics on submillimeter length scales, precision studies of ultracold collision physics, and angle-resolved studies of quantum spin dynamics.

14.
Sensors (Basel) ; 19(15)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374987

ABSTRACT

In this paper, a review of the state-of-the-art chipless radiofrequency identification (RFID) technology is carried out. This recent technology may provide low cost tags as long as these tags are not equipped with application specific integrated circuits (ASICs). Nevertheless, chipless-RFID presents a series of technological challenges that have been addressed by different research groups in the last decade. One of these challenges is to increase the data storage capacity of tags, in order to be competitive with optical barcodes, or even with chip-based RFID tags. Thus, the main aim of this paper is to properly clarify the advantages and disadvantages of chipless-RFID technology. Moreover, since the coding information is an important aspect in such technology, the different coding techniques, as well as the main figures of merit used to compare different chipless-RFID tags, will be analyzed.

15.
Sensors (Basel) ; 19(14)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331078

ABSTRACT

A microstrip defect ground structure (DGS) based on a pair of dumbbell-shaped slots is used for sensing. The device is a differential sensor consisting of a pair of mirrored lines loaded with a dumbbell-shaped DGS, and the output variable is the cross-mode transmission coefficient. Such a variable is very sensitive to asymmetries in the line pair, e.g., caused by an asymmetric dielectric load in the dumbbell-shaped DGSs. Therefore, the sensor is of special interest for the dielectric characterization of solids and liquids, or for the measurement of variables related to complex permittivity changes. It is shown in this work that by adding fluidic channels on top of the dumbbell-shaped DGSs, the device is useful for liquid characterization, particularly for the measurement of solute concentration in very diluted solutions. A sensitivity analysis useful for sensor design is carried out in this paper.

16.
Sensors (Basel) ; 19(4)2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30823608

ABSTRACT

In this paper, the correlation coefficients and the total scattering cross sections (TSCSs) for different types of metasurfaced stirrers and the traditional metallic stirrer, and the effects on field uniformity when such stirrers are used in reverberation chambers, are analyzed. Three metasurfaced stirrers are considered: A stirrer with two unit cells arranged alternatively (#1), a stirrer with two unit cells arranged in a chessboard-like manner (#2), and a stirrer with two unit cells in random arrangement (#3). From the correlation coefficient and TSCS results obtained in simulations, it follows that metasurfaced stirrer #1 is the best option. Field uniformity analysis of the resulting metasurface reverberation chambers (MRC) equipped with the different stirrers also supports this conclusion.

17.
Sensors (Basel) ; 18(10)2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30275373

ABSTRACT

The use of metasurfaces to increase the number of modes, lower the operating frequency, and improve the field uniformity in reverberation chambers (RCs) is investigated in this paper. The method used to improve the field uniformity and decrease the resonance frequencies is based on increasing the number of modes by using the concept of subwavelength cavities. The resonance frequencies of a RC with metasurface wall are derived and expressed analytically in terms of macroscopic characteristics. Simulation of the reflection phase of the unit cell is then given as a guideline to choose the required microscopic parameters of the designed metasurface. The mode density in such subwavelength RCs is then obtained using a numerical eigenmode solver. Compared to traditional RCs, a much higher modal density is obtained at low frequencies. The standard deviation of the field uniformity in the test volume of the RC corresponding to different types of metasurface walls is finally compared. It is shown that by increasing the number of modes in the RC at the lower band, the operating frequency decreases and the field uniformity of the RC is improved.

18.
Sensors (Basel) ; 18(4)2018 Apr 09.
Article in English | MEDLINE | ID: mdl-29642560

ABSTRACT

A chipless radio-frequency identification (chipless-RFID) and sensing system, where tags are read by proximity (near-field) through a switch, is presented. The tags consist of a set of identical resonant elements (split-ring resonators or SRRs), printed or etched at predefined and equidistant positions, forming a linear chain, each SRR providing a bit of information. The logic state ('1' or '0') associated with each resonator depends on whether it is present or not in the predefined position. The reader is an array of power splitters used to feed a set of SRR-loaded transmission lines (in equal number to the number of resonant elements, or bits, of the tag). The feeding (interrogation) signal is a harmonic (single-tone) signal tuned to a frequency in the vicinity of the fundamental resonance of the SRRs. The set of SRR-loaded lines must be designed so that the corresponding SRRs are in perfect alignment with the SRRs of the tag, provided the tag is positioned on top of the reader. Thus, in a reading operation, as long as the tag is very close to the reader, the SRRs of the tag modify (decrease) the transmission coefficient of the corresponding reader line (through electromagnetic coupling between both SRRs), and the amplitude of the output signal is severely reduced. Therefore, the identification (ID) code of the tag is contained in the amplitudes of the output signals of the SRR-loaded lines, which can be inferred sequentially by means of a switching system. Unlike previous chipless-RFID systems based on near-field and sequential bit reading, the tags in the proposed system can be merely positioned on top of the reader, conveniently aligned, without the need to mechanically place them across the reader. Since tag reading is only possible if the tag is very close to the reader, this system can be also used as a proximity sensor with applications such as target identification. The proposed chipless-RFID and sensing approach is validated by reading a designed 4-bit tag. For identification purposes, this system is of special interest in applications where a low number of bits suffice, and tag reading by proximity is acceptable (or even convenient). Applications mostly related to secure paper, particularly involving a limited number of items (e.g., exams, ballots, etc.), in order to provide authenticity and avoid counterfeiting, are envisaged. As a proximity sensor, the system may be of use in detecting and distinguishing different targets in applications such as smart packaging.

19.
Sensors (Basel) ; 18(4)2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29587460

ABSTRACT

In this paper, an analytical method to estimate the complex dielectric constant of liquids is presented. The method is based on the measurement of the transmission coefficient in an embedded microstrip line loaded with a complementary split ring resonator (CSRR), which is etched in the ground plane. From this response, the dielectric constant and loss tangent of the liquid under test (LUT) can be extracted, provided that the CSRR is surrounded by such LUT, and the liquid level extends beyond the region where the electromagnetic fields generated by the CSRR are present. For that purpose, a liquid container acting as a pool is added to the structure. The main advantage of this method, which is validated from the measurement of the complex dielectric constant of olive and castor oil, is that reference samples for calibration are not required.

20.
Sci Rep ; 8(1): 1577, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29371675

ABSTRACT

The concept of metasurfaced reverberation chamber (RC) is introduced in this paper. It is shown that by coating the chamber wall with a rotating 1-bit random coding metasurface, it is possible to enlarge the test zone of the RC while maintaining the field uniformity as good as that in a traditional RC with mechanical stirrers. A 1-bit random coding diffusion metasurface is designed to obtain all-direction backscattering under normal incidence. Three specific cases are studied for comparisons, including a (traditional) mechanical stirrer RC, a mechanical stirrer RC with a fixed diffusion metasurface, and a RC with a rotating diffusion metasurface. Simulation results show that the compact rotating diffusion metasurface can act as a stirrer with good stirring efficiency. By using such rotating diffusion metasurface, the test region of the RC can be greatly extended.

SELECTION OF CITATIONS
SEARCH DETAIL
...