Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Viruses ; 16(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932245

ABSTRACT

BACKGROUND: Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases' pathogenesis. Nevertheless, our understanding of respiratory microbiota is limited by technical constraints, predominantly focusing on bacteria and neglecting crucial populations like viruses. Despite recent efforts to improve our understanding of viral diversity in the human body, our knowledge of viral diversity associated with the human respiratory tract remains limited. METHODS: Following a comprehensive search in bibliographic and sequencing data repositories using keyword terms, we retrieved shotgun metagenomic data from public repositories (n = 85). After manual curation, sequencing data files from 43 studies were analyzed using EVEREST (pipEline for Viral assEmbly and chaRactEriSaTion). Complete and high-quality contigs were further assessed for genomic and taxonomic characterization. RESULTS: Viral contigs were obtained from 194 out of the 868 FASTQ files processed through EVEREST. Of the 1842 contigs that were quality assessed, 8% (n = 146) were classified as complete/high-quality genomes. Most of the identified viral contigs were taxonomically classified as bacteriophages, with taxonomic resolution ranging from the superkingdom level down to the species level. Captured contigs were spread across 25 putative families and varied between RNA and DNA viruses, including previously uncharacterized viral genomes. Of note, airway samples also contained virus(es) characteristic of the human gastrointestinal tract, which have not been previously described as part of the lung virome. Additionally, by performing a meta-analysis of the integrated datasets, ecological trends within viral populations linked to human disease states and their biogeographical distribution along the respiratory tract were observed. CONCLUSION: By leveraging publicly available repositories of shotgun metagenomic data, the present study provides new insights into viral genomes associated with specimens from the human respiratory tract across different disease spectra. Further studies are required to validate our findings and evaluate the potential impact of these viral communities on respiratory tract physiology.


Subject(s)
Genome, Viral , Metagenomics , Respiratory System , Virome , Viruses , Humans , Metagenomics/methods , Respiratory System/virology , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metagenome , Computer Simulation , Phylogeny , Computational Biology/methods , Microbiota , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification
2.
Front Allergy ; 5: 1349741, 2024.
Article in English | MEDLINE | ID: mdl-38666051

ABSTRACT

Introduction: Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods: The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to 5 years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to 6 weeks, 1, 3, and 5 years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Discussion: The AERIAL study will provide a comprehensive longitudinal assessment of factors influencing the association between epithelial dysfunction and respiratory morbidity in early life, and hopefully identify novel targets for diagnosis and early intervention.

3.
Endocr Pract ; 30(4): 372-379, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307457

ABSTRACT

OBJECTIVE: Christmas holidays can impact weight and glycemic control in type 2 diabetes, but their effect on type 1 diabetes (T1D) remains understudied. This study assessed how Christmas holidays affect individuals with T1D who use flash continuous glucose monitoring systems. METHODS: This retrospective study involved 812 adults diagnosed with T1D recruited from 3 hospitals. Clinical, anthropometric, and socioeconomic data were collected. Glucose metrics from 14 days before January 1st, and before December 1st and February 1st as control periods, were recorded. Analyses adjusted for multiple variables were conducted to assess the holiday season's impact on glycemic control. RESULTS: The average time in range during the holidays (60.0 ± 17.2%) was lower compared to December (61.9 ± 17.2%, P < .001) and February (61.7 ± 17.7%, P < .001). Time above range (TAR > 180 mg/dL) was higher during Christmas (35.8 ± 18.2%) compared to December (34.1 ± 18.3%, P < .001) and February (34.2 ± 18.4%, P < .001). Differences were also observed in TAR >250 mg/dL, coefficient of variation, and average glucose (P < .05). No differences were found in time below range or other metrics. Linear regression models showed that the holidays reduced time in range by 1.9% (ß = -1.92, P = .005) and increased TAR >180 mg/dL by 1.8% (ß = 1.75, P = .016). CONCLUSION: Christmas holidays are associated with a mild and reversible deterioration in glucose metrics among individuals with T1D using flash continuous glucose monitoring, irrespective of additional influencing factors. These discoveries can be useful to advise individuals with diabetes during the festive season and to recognize potential biases within studies conducted during this timeframe.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Adult , Humans , Holidays , Glucose , Retrospective Studies , Blood Glucose Self-Monitoring , Blood Glucose
4.
Microorganisms ; 12(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257996

ABSTRACT

BACKGROUND: Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of global mortality, often associated with high blood levels of LDL cholesterol (LDL-c). Medications like statins and PCSK9 inhibitors, are used to manage LDL-c levels and reduce ASCVD risk. Recent findings connect the gut microbiota and its metabolites to ASCVD development. We showed that statins modulate the gut microbiota including the production of microbial metabolites involved in the regulation of cholesterol metabolism such as short chain fatty acids (SCFAs) and bile acids (BAs). Whether this pleiotropic effect of statins is associated with their antimicrobial properties or it is secondary to the modulation of cholesterol metabolism in the host is unknown. In this observational study, we evaluated whether alirocumab, a PCSK9 inhibitor administered subcutaneously, alters the stool-associated microbiota and the profiles of SCFAs and BAs. METHODS: We used stool and plasma collected from patients enrolled in a single-sequence study using alirocumab. Microbial DNA was extracted from stool, and the bacterial component of the gut microbiota profiled following an amplicon sequencing strategy targeting the V3-V4 region of the 16S rRNA gene. Bile acids and SCFAs were profiled and quantified in stool and plasma using mass spectrometry. RESULTS: Treatment with alirocumab did not alter bacterial alpha (Shannon index, p = 0.74) or beta diversity (PERMANOVA, p = 0.89) in feces. Similarly, circulating levels of SCFAs (mean difference (95% confidence interval (CI)), 8.12 [-7.15-23.36] µM, p = 0.25) and BAs (mean difference (95% CI), 0.04 [-0.11-0.19] log10(nmol mg-1 feces), p = 0.56) were equivalent regardless of PCSK9 inhibition. Alirocumab therapy was associated with increased concentration of BAs in feces (mean difference (95% CI), 0.20 [0.05-0.34] log10(nmol mg-1 feces), p = 0.01). CONCLUSION: In statin-treated patients, the use of alirocumab to inhibit PCSK9 leads to elevated levels of fecal BAs without altering the bacterial population of the gut microbiota. The association of alirocumab with increased fecal BA concentration suggests an additional mechanism for the cholesterol-lowering effect of PCSK9 inhibition.

5.
Physiol Genomics ; 56(1): 48-64, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37811721

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death worldwide. The gut microbiota and its associated metabolites may be involved in the development and progression of CVD, although the mechanisms and impact on clinical outcomes are not fully understood. This study investigated the gut microbiome profile and associated metabolites in patients with chronic stable angina (CSA) and acute coronary syndrome (ACS) compared with healthy controls. Bacterial alpha diversity in stool from patients with ACS or CSA was comparable to healthy controls at both baseline and follow-up visits. Differential abundance analysis identified operational taxonomic units (OTUs) assigned to commensal taxa differentiating patients with ACS from healthy controls at both baseline and follow-up. Patients with CSA and ACS had significantly higher levels of trimethylamine N-oxide compared with healthy controls (CSA: 0.032 ± 0.023 mmol/L, P < 0.01 vs. healthy, and ACS: 0.032 ± 0.023 mmol/L, P = 0.02 vs. healthy, respectively). Patients with ACS had reduced levels of propionate and butyrate (119 ± 4 vs. 139 ± 5.1 µM, P = 0.001, and 14 ± 4.3 vs. 23.5 ± 8.1 µM, P < 0.001, respectively), as well as elevated serum sCD14 (2245 ± 75.1 vs. 1834 ± 45.8 ng/mL, P < 0.0001) and sCD163 levels (457.3 ± 31.8 vs. 326.8 ± 20.7 ng/mL, P = 0.001), compared with healthy controls at baseline. Furthermore, a modified small molecule metabolomic and lipidomic signature was observed in patients with CSA and ACS compared with healthy controls. These findings provide evidence of a link between gut microbiome composition and gut bacterial metabolites with CVD. Future time course studies in patients to observe temporal changes and subsequent associations with gut microbiome composition are required to provide insight into how these are affected by transient changes following an acute coronary event.NEW & NOTEWORTHY The study found discriminative microorganisms differentiating patients with acute coronary syndrome (ACS) from healthy controls. In addition, reduced levels of certain bacterial metabolites and elevated sCD14 and sCD163 were observed in patients with ACS compared with healthy controls. Furthermore, modified small molecule metabolomic and lipidomic signatures were found in both patient groups. Although it is not known whether these differences in profiles are associated with disease development and/or progression, the findings provide exciting options for potential new disease-related mechanism(s) and associated therapeutic target(s).


Subject(s)
Acute Coronary Syndrome , Angina, Stable , Gastrointestinal Microbiome , Humans , Lipopolysaccharide Receptors , Metabolomics , Bacteria
6.
Brain Behav Immun ; 115: 120-130, 2024 01.
Article in English | MEDLINE | ID: mdl-37806533

ABSTRACT

Microbiome science has been one of the most exciting and rapidly evolving research fields in the past two decades. Breakthroughs in technologies including DNA sequencing have meant that the trillions of microbes (particularly bacteria) inhabiting human biological niches (particularly the gut) can be profiled and analysed in exquisite detail. This microbiome profiling has profound impacts across many fields of research, especially biomedical science, with implications for how we understand and ultimately treat a wide range of human disorders. However, like many great scientific frontiers in human history, the pioneering nature of microbiome research comes with a multitude of challenges and potential pitfalls. These include the reproducibility and robustness of microbiome science, especially in its applications to human health outcomes. In this article, we address the enormous promise of microbiome science and its many challenges, proposing constructive solutions to enhance the reproducibility and robustness of research in this nascent field. The optimisation of microbiome science spans research design, implementation and analysis, and we discuss specific aspects such as the importance of ecological principals and functionality, challenges with microbiome-modulating therapies and the consideration of confounding, alternative options for microbiome sequencing, and the potential of machine learning and computational science to advance the field. The power of microbiome science promises to revolutionise our understanding of many diseases and provide new approaches to prevention, early diagnosis, and treatment.


Subject(s)
Microbiota , Humans , Reproducibility of Results , Machine Learning
7.
Am J Physiol Heart Circ Physiol ; 325(6): H1325-H1336, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37737730

ABSTRACT

Heart failure (HF) is the end stage of most cardiovascular diseases and remains a significant health problem globally. We aimed to assess whether patients with left ventricular ejection fraction ≤45% had alterations in both the gut microbiome profile and production of associated metabolites when compared with a healthy cohort. We also examined the associated inflammatory, metabolomic, and lipidomic profiles of patients with HF. This single center, observational study, recruited 73 patients with HF and 59 healthy volunteers. Blood and stool samples were collected at baseline and 6-mo follow-up, along with anthropometric and clinical data. When compared with healthy controls, patients with HF had reduced gut bacterial alpha diversity at follow-up (P = 0.004) but not at baseline. The stool microbiota of patients with HF was characterized by a depletion of operational taxonomic units representing commensal Clostridia at both baseline and follow-up. Patients with HF also had significantly elevated baseline plasma acetate (P = 0.007), plasma trimethylamine-N-oxide (TMAO) (P = 0.003), serum soluble CD14 (sCD14; P = 0.005), and soluble CD163 (sCD163; P = 0.004) levels compared with healthy controls. Furthermore, patients with HF had a distinct metabolomic and lipidomic profile at baseline when compared with healthy controls. Differences in the composition of the gut microbiome and the levels of associated metabolites were observed in patients with HF when compared with a healthy cohort. This was also associated with an altered metabolomic and lipidomic profile. Our study identifies microorganisms and metabolites that could represent new therapeutic targets and diagnostic tools in the pathogenesis of HF.NEW & NOTEWORTHY We found a reduction in gut bacterial alpha diversity in patients with heart failure (HF) and that the stool microbiota of patients with HF was characterized by depletion of operational taxonomic units representing commensal Clostridia at both baseline and follow-up. Patients with HF also had altered bacterial metabolites and increased inflammatory profiles compared with healthy controls. A distinct metabolomic and lipidomic profile was present in patients with HF at baseline when compared with healthy controls.


Subject(s)
Gastrointestinal Microbiome , Heart Failure , Microbiota , Humans , Stroke Volume , Ventricular Function, Left
8.
Int J Mol Sci ; 24(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37629186

ABSTRACT

Cancer cachexia is a multifactorial syndrome that interferes with treatment and reduces the quality of life and survival of patients. Currently, there is no effective treatment or biomarkers, and pathophysiology is not clear. Our group reported alterations on tryptophan metabolites in cachectic patients, so we aim to investigate the role of tryptophan using two cancer-associated cachexia syngeneic murine models, melanoma B16F10, and pancreatic adenocarcinoma that is KPC-based. Injected mice showed signs of cancer-associated cachexia as reduction in body weight and raised spleen weight, MCP1, and carbonilated proteins in plasma. CRP and Myostatin also increased in B16F10 mice. Skeletal muscle showed a decrease in quadriceps weight and cross-sectional area (especially in B16F10). Higher expression of atrophy genes, mainly Atrogin1, was also observed. Plasmatic tryptophan levels in B16F10 tumor-bearing mice decreased even at early steps of tumorigenesis. In KPC-injected mice, tryptophan fluctuated but were also reduced and in cachectic patients were significantly lower. Treatment with 1-methyl-tryptophan, an inhibitor of tryptophan degradation, in the murine models resulted in the restoration of plasmatic tryptophan levels and an improvement on splenomegaly and carbonilated proteins levels, while changes in plasmatic inflammatory markers were mild. After the treatment, CCR2 expression in monocytes diminished and lymphocytes, Tregs, and CD8+, were activated (seen by increased in CD127 and CD25 expression, respectively). These immune cell changes pointed to an improvement in systemic inflammation. While treatment with 1-MT did not show benefits in terms of muscle wasting and atrophy in our experimental setting, muscle functionality was not affected and central nuclei fibers appeared, being a feature of regeneration. Therefore, tryptophan metabolism pathway is a promising target for inflammation modulation in cancer-associated cachexia.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Animals , Mice , Cachexia/etiology , Quality of Life , Tryptophan , Muscular Atrophy/etiology , Inflammation
9.
Cancers (Basel) ; 15(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37509236

ABSTRACT

Evidence suggests the involvement of the microbiota, including oral, intra-tumoral and gut, in pancreatic cancer progression and response to therapy. The gut microbiota modulates the bile acid pool and is associated with maintaining host physiology. Studies have shown that the bile acid/gut microbiota axis is dysregulated in pancreatic cancer. Bile acid receptor expression and bile acid levels are dysregulated in pancreatic cancer as well. Studies have also shown that bile acids can cause pancreatic cell injury and facilitate cancer cell proliferation. The microbiota and its metabolites, including bile acids, are also altered in other conditions considered risk factors for pancreatic cancer development and can alter responses to chemotherapeutic treatments, thus affecting patient outcomes. Altogether, these findings suggest that the gut microbial and/or bile acid profiles could also serve as biomarkers for pancreatic cancer detection. This review will discuss the current knowledge on the interaction between gut microbiota interaction and bile acid metabolism in pancreatic cancer.

10.
Microorganisms ; 11(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37317100

ABSTRACT

The gut microbiome plays a significant role in regulating the host's ability to store fat, which impacts the development of obesity. This observational cohort study recruited obese adult men and women scheduled to undergo sleeve gastrectomy and followed up with them 6 months post-surgery to analyse their microbial taxonomic profiles and associated metabolites in comparison to a healthy control group. There were no significant differences in the gut bacterial diversity between the bariatric patients at baseline and at follow-up or between the bariatric patients and the cohort of healthy controls. However, there were differential abundances in specific bacterial groups between the two cohorts. The bariatric patients were observed to have significant enrichment in Granulicatella at baseline and Streptococcus and Actinomyces at follow-up compared to the healthy controls. Several operational taxonomic units assigned to commensal Clostridia were significantly reduced in the stool of bariatric patients both at baseline and follow-up. When compared to a healthy cohort, the plasma levels of the short chain fatty acid acetate were significantly higher in the bariatric surgery group at baseline. This remained significant when adjusted for age and sex (p = 0.013). The levels of soluble CD14 and CD163 were significantly higher (p = 0.0432 and p = 0.0067, respectively) in the bariatric surgery patients compared to the healthy controls at baseline. The present study demonstrated that there are alterations in the abundance of certain bacterial groups in the gut microbiome of obese patients prior to bariatric surgery compared to healthy individuals, which persist post-sleeve gastrectomy.

11.
Microbiome ; 11(1): 132, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37312128

ABSTRACT

BACKGROUND: Cystic Fibrosis (CF) is a genetic condition characterized by neutrophilic inflammation and recurrent infection of the airways. How these processes are initiated and perpetuated in CF remains largely unknown. We have demonstrated a link between the intestinal microbiota-related metabolites bile acids (BA) and inflammation in the bronchoalveolar lavage fluid (BALF) from children with stable CF lung disease. To establish if BA indicate early pathological processes in CF lung disease, we combined targeted mass spectrometry and amplicon sequencing-based microbial characterization of 121 BALF specimens collected from 12-month old infants with CF enrolled in the COMBAT-CF study, a multicentre randomized placebo-controlled clinical trial comparing azithromycin versus placebo. We evaluated whether detection of BA in BALF is associated with the establishment of the inflammatory and microbial landscape of early CF lung disease, and whether azithromycin, a motilin agonist that has been demonstrated to reduce aspiration of gastric contents, alters the odds of detecting BA in BALF. We also explored how different prophylactic antibiotics regimens impact the early life BALF microbiota. RESULTS: Detection of BA in BALF was strongly associated with biomarkers of airway inflammation, more exacerbation episodes during the first year of life, increased use of oral antibiotics with prolonged treatment periods, a higher degree of structural lung damage, and distinct microbial profiles. Treatment with azithromycin, a motilin agonist, which has been reported to reduce aspiration of gastric contents, did not reduce the odds of detecting BA in BALF. Culture and molecular methods showed that azithromycin does not alter bacterial load or diversity in BALF. Conversely, penicillin-type prophylaxis reduced the odds of detecting BAs in BALF, which was associated with elevated levels of circulating biomarkers of cholestasis. We also observed that environmental factors such as penicillin-type prophylaxis or BAs detection were linked to distinct early microbial communities of the CF airways, which were associated with different inflammatory landscapes but not with structural lung damage. CONCLUSIONS: Detection of BA in BALF portend early pathological events in CF lung disease. Benefits early in life associated with azithromycin are not linked to its antimicrobial properties. Video Abstract.


Subject(s)
Cystic Fibrosis , Humans , Infant , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Bile Acids and Salts , Bronchoalveolar Lavage Fluid , Cystic Fibrosis/drug therapy , Inflammation , Motilin , Penicillins
12.
medRxiv ; 2023 May 03.
Article in English | MEDLINE | ID: mdl-37205501

ABSTRACT

Introduction: Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods and Analysis: The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to five years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to six weeks, one, three, and five years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Ethics and Dissemination: Ethical approval has been obtained from Ramsey Health Care HREC WA-SA (#1908). Results will be disseminated through open-access peer-reviewed manuscripts, conference presentations, and through different media channels to consumers, ORIGINS families, and the wider community.

13.
Oncologist ; 28(6): e406-e415, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37036865

ABSTRACT

BACKGROUND: T-cell receptor (TCR-T) therapies are based on the expression of an introduced TCR targeting a tumor associated antigen (TAA) which has been studied in several trials in cutaneous melanoma. We conducted a systematic review and meta-analysis aiming to assess the primary efficacy of TCR-based adoptive cell therapy in cutaneous melanoma. METHODS: We searched through PubMed electronic database from its inception until May 21, 2022. Primary endpoints were pooled objective response rate (ORR) and disease control rate (DCR). We conducted logistic regression analyses to identify potential predictive factors for tumor response. RESULTS: From 187 patients, 50 showed an objective response (pooled ORR 28%; 95% CI, 20%-37%) and a pooled DCR of 38% (95% CI, 27%-50%). Median PFS was 2, 9 months (95% CI, 1.4-3.1). A trend toward higher PFS was demonstrated for patients treated with cancer/testis antigens targeting TCR-T cells (HR 0.91 95% CI, 0.64-1.3, P = .61) among whom, patients treated with NYESO-1 targeting TCR-T showed a significantly higher PFS (HR 0.63 95% CI, 0.64-0.98, P = .03). In addition, the number of infused cells was associated with a significantly higher likelihood of tumor response (OR 6.61; 95% CI, 1.68-21.6; P = .007). CONCLUSION: TCR-T therapy shows promising results in terms of antitumor activity and survival similar to those reported for TILs with a significantly higher benefit for cancer/testis antigens targeting cells. Since TCR-based therapy shows advantages of great potential over classic ACT strategies, further research in solid cancers is warranted (PROSPERO ID CRD42022328011).


Subject(s)
Melanoma , Skin Neoplasms , Male , Humans , Melanoma/pathology , Skin Neoplasms/therapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/genetics , Melanoma, Cutaneous Malignant
14.
Front Cell Infect Microbiol ; 13: 1097809, 2023.
Article in English | MEDLINE | ID: mdl-36909731

ABSTRACT

Introduction: The APLICOV-PC study assessed the safety and preliminary efficacy of plitidepsin in hospitalized adult patients with COVID-19. In this follow-up study (E-APLICOV), the incidence of post-COVID-19 morbidity was evaluated and any long-term complications were characterized. Methods: Between January 18 and March 16, 2022, 34 of the 45 adult patients who received therapy with plitidepsin in the APLICOV-PC study were enrolled in E-APLICOV (median time from plitidepsin first dose to E-APLICOV enrollment, 16.8 months [range, 15.2-19.5 months]). All patients were functionally autonomous with regard to daily living (Barthel index: 100) and had normal physical examinations. Results: From the APLICOV-PC date of discharge to the date of the extension visit, neither Common Terminology Criteria for Adverse Events version 5.0 (CTCAE v5) grade 3-4 complications nor QT prolongation or significant electrocardiogram (EKG) abnormalities were reported. Five (14.7%) patients had another COVID-19 episode after initial discharge from APLICOV-PC, and in 2 patients (5.9%), previously unreported chest X-ray findings were documented. Spirometry and lung-diffusion tests were normal in 29 (85.3%) and 27 (79.4%) patients, respectively, and 3 patients needed additional oxygen supplementation after initial hospital discharge. None of these patients required subsequent hospital readmission for disease-related complications. Discussion: In conclusion, plitidepsin has demonstrated a favorable long-term safety profile in adult patients hospitalized for COVID-19. With the constraints of a low sample size and a lack of control, the rate of post-COVID-19 complications after treatment with plitidepsin is in the low range of published reports. (ClinicalTrials.gov Identifier: NCT05121740; https://clinicaltrials.gov/ct2/show/NCT05121740).


Subject(s)
COVID-19 , Humans , Adult , Follow-Up Studies , SARS-CoV-2 , Hospitals , Treatment Outcome
15.
Chemosphere ; 308(Pt 1): 136021, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35970209

ABSTRACT

Rodents are considered one of the animal pests with the greatest impact on agricultural production and public health. Anticoagulant rodenticides (ARs), used as one of the most effective ways to control rodent populations worldwide, inhibit the vitamin K 2,3-epoxide reductase (VKORC1) enzyme involved in blood coagulation. Resistances to ARs are mainly associated with mutations or single nucleotide polymorphisms (SNPs) in the vkorc1 gene. Since the information on this subject is scarce in Spain, we monitored and discovered rodent SNPs that could favour genetic resistance in its populations. For that, more than 200 samples of stools and tails from brown rat (Rattus norvegicus), black rat (Rattus rattus) and mouse (Mus musculus) were collected from 12 Spanish regions previously identified with low AR efficacy in coordination with the National Association of Environmental Sanitation Companies (ANECPLA) and the managing entities of four locations. We then sequenced their vkorc1 exon 3 corresponding genomic DNA. We identified genotypic vkorc1 variations corresponding to amino acid changes at the VKORC1 protein at the S149I - S149T and the E155K - E155Q mutations, depending on the rodent species. Computational analysis of binding predictions found out that the brown rat S149I mutation predicted a high reduction of the binding affinity of chlorophacinone and brodifacoum ARs while, the black rat S149T, E155K and E155Q mutations slightly reduced bromadiolone AR binding. These results suggest that these mutations may be one of the causes of the increased resistance to those ARs.


Subject(s)
Rodenticides , Amino Acids/genetics , Animals , Anticoagulants , Drug Resistance , Membrane Proteins/genetics , Mice , Polymorphism, Single Nucleotide , Rats , Rodentia , Rodenticides/pharmacology , Spain , Vitamin K Epoxide Reductases/genetics
16.
Sensors (Basel) ; 22(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35458893

ABSTRACT

The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.


Subject(s)
Dust , Extraterrestrial Environment , Atmosphere
17.
Gynecol Oncol ; 166(2): 211-218, 2022 08.
Article in English | MEDLINE | ID: mdl-35361487

ABSTRACT

OBJECTIVE: Treatment options for advanced vulvar cancer are limited. We evaluated pembrolizumab monotherapy in patients with advanced vulvar squamous cell carcinoma (SCC) enrolled in the phase 2 multicohort, open-label KEYNOTE-158 study (NCT02628067). METHODS: Eligible patients had histologically or cytologically documented advanced vulvar SCC with prior treatment failure, measurable disease per RECIST v1.1, ECOG performance status 0-1, and a tumor sample available for biomarker analysis. Pembrolizumab 200 mg was administered intravenously Q3W for up to 35 cycles (approximately 2 years). The primary endpoint was objective response rate (ORR) per RECIST v1.1 by independent central radiologic review in all patients and subgroups based on PD-L1 combined positive score (≥1 [PD-L1-positive] versus <1 [PD-L1-negative]). RESULTS: 101 patients were enrolled. Median time from first dose to data cutoff was 36.0 months. The ORR (95% CI) was 10.9% (5.6%-18.7%) among all patients, 9.5% (4.2%-17.9%) among the 84 patients with PD-L1-positive tumors, and 28.6% (3.7%-71.0%) among the 7 patients with PD-L1-negative tumors. Among patients with a response, median DOR was 20.4 (range, 2.1+ to 28.0) months. Median (95% CI) PFS and OS were 2.1 (2.0-2.1) and 6.2 (4.9-9.4) months, respectively. Treatment-related AEs occurred in 50.5% of patients (grade 3-5, 11.9%) and led to discontinuation of treatment in 5.0% of patients. Two deaths were considered treatment-related (hepatitis, n = 2). CONCLUSIONS: Pembrolizumab monotherapy was associated with durable responses in a subset of patients with vulvar SCC. Responses occurred regardless of tumor PD-L1 status. No new safety signals emerged; overall, pembrolizumab was well tolerated.


Subject(s)
Carcinoma, Squamous Cell , Vulvar Neoplasms , Antibodies, Monoclonal, Humanized/adverse effects , B7-H1 Antigen/metabolism , Carcinoma, Squamous Cell/drug therapy , Female , Humans , Vulvar Neoplasms/drug therapy
18.
Ther Adv Med Oncol ; 14: 17588359221086911, 2022.
Article in English | MEDLINE | ID: mdl-35356259

ABSTRACT

Background: Hand-foot syndrome (HFS) is a common adverse reaction associated with capecitabine chemotherapy that significantly affects the quality of life of patients. This study evaluates the safety and effectiveness of a topical heparin (TH) treatment on the clinical manifestations and anatomopathological alterations of capecitabine-induced HFS. In addition, we performed proteome profiling of skin biopsies obtained from patients with HFS at baseline and after heparin treatment. Methods: Patients with grade ⩽ 2 HFS associated with capecitabine were included in this study. The primary end point was the effectiveness of TH in reducing HFS of any grade. Clinical improvement was evaluated by clinicians, and an improvement was perceived by patients who performed a weekly visual analog scale questionnaire. Secondary end points included a comparative histological analysis and protein expression in skin biopsies at baseline and after 3 weeks of HT treatment. Proteomic profiling was carried out using quantitative isobaric labelling and subsequently validated by a T-array. Results: Twenty-one patients were included in the study. The median TH treatment time was 7.6 weeks (range = 3.6-41.6 weeks), and the median response time was 3.01 weeks (95% CI = 2.15-3.97). At the end of treatment, 19 of 21 patients (90.48%) responded to treatment with a decrease in one or more grades of HFS. None of the patients experienced adverse effects related to TH usage, nor did they suspend chemotherapy treatment. The main findings observed in skin biopsies after treatment were a decrease in hyperkeratosis and lymphocytic infiltrates. The proteomic analysis showed altered expression of 34 proteins that were mainly related to wound healing, cell growth, and the immune response. Conclusion: Based on our results, topical heparin is an effective and safe treatment for clinical manifestations of HFS, probably due to the restauration of skin homeostasis after heparin treatment, as supported by our proteomics-derived data. Trial registration: EudraCT 2009-018171-13.

19.
Toxics ; 10(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35051056

ABSTRACT

Physical and chemical alterations may affect the microbiota of soils as much as the specific presence of toxic pollutants. The relationship between the microbial diversity patterns and the soil quality in a Mediterranean context is studied here to test the hypothesis that soil microbiota is strongly affected by the level of anthropogenic soil alteration. Our aim has been to determine the potential effect of organic matter loss and associated changes in soil microbiota of poorly evolved Mediterranean soils (Leptosols and Regosols) suffering anthropogenic stress (i.e., cropping and deforestation). The studied soils correspond to nine different sites which differed in some features, such as the parent material, vegetation cover, or soil use and types. A methodological approach has been used that combines the classical physical and chemical study of soils with molecular characterization of the microbial assemblages using specific primers for Bacteria, Archaea and ectomycorrhizal Fungi. In agreement with previous studies within the region, physical, chemical and biological characteristics of soils varied notably depending on these factors. Microbial biomass, soil organic matter, and moisture, decreased in soils as deforestation increased, even in those partially degraded to substitution shrubland. Major differences were observed in the microbial community structure between the mollic and rendzic Leptosols found in forest soils, and the skeletic and dolomitic Leptosols in substitute shrublands, as well as with the skeletic and dolomitic Leptosols and calcaric Regosols in dry croplands. Forest soils displayed a higher microbial richness (OTU's number) and biomass, as well as more stable and connected ecological networks. Here, we point out how human activities such as agriculture and other effects of deforestation led to changes in soil properties, thus affecting its quality driving changes in their microbial diversity and biomass patterns. Our findings demonstrate the potential risk that the replacement of forest areas may have in the conservation of the soil's microbiota pool, both active and passive, which are basic for the maintenance of biogeochemical processes.

20.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-35012962

ABSTRACT

Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Depsipeptides/therapeutic use , Hospitalization/statistics & numerical data , Peptides, Cyclic/therapeutic use , SARS-CoV-2/drug effects , Adult , Aged , COVID-19/virology , Cell Line, Tumor , Depsipeptides/adverse effects , Depsipeptides/pharmacology , Drug Evaluation, Preclinical/methods , Female , Humans , Kaplan-Meier Estimate , Length of Stay/statistics & numerical data , Male , Middle Aged , Neutropenia/chemically induced , Peptides, Cyclic/adverse effects , Peptides, Cyclic/pharmacology , SARS-CoV-2/physiology , Treatment Outcome , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...