Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(W1): W476-W480, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38634809

ABSTRACT

Tackling climate change challenges requires replacing current chemical industrial processes through the rational and sustainable use of biodiversity resources. To that end, production routes to key bio-based chemicals for the bioeconomy have been identified. However, their production still remains inefficient in terms of titers, rates, and yields; because of the hurdles found when scaling up. In order to make production more efficient, strategies like automated screening and dynamic pathway regulation through biosensors have been applied as part of strain optimization. However, to date, no systematic way exists to design a genetic circuit that is responsive to concentrations of a given target compound. Here, the DetSpace web server provides a set of integrated tools that allows a user to select and design a biological circuit that performs the sensing of a molecule of interest by its enzymatic conversion to a detectable molecule through a transcription factor. In that way, the DetSpace web server allows synthetic biologists to easily design biosensing routes for the dynamic regulation of metabolic pathways in applications ranging from genetic circuits design, screening, production, and bioremediation of bio-based chemicals, to diagnostics and drug delivery.


Subject(s)
Internet , Metabolic Engineering , Software , Metabolic Engineering/methods , Synthetic Biology/methods , Metabolic Networks and Pathways/genetics , Biosensing Techniques , Gene Regulatory Networks , Transcription Factors/metabolism , Transcription Factors/genetics
2.
BMC Bioinformatics ; 24(1): 71, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36855083

ABSTRACT

Allosteric transcription factor (aTF) based biosensors can be used to engineer genetic circuits for a wide range of applications. The literature and online databases contain hundreds of experimentally validated molecule-TF pairs; however, the knowledge is scattered and often incomplete. Additionally, compared to the number of compounds that can be produced in living systems, those with known associated TF-compound interactions are low. For these reasons, new tools that help researchers find new possible TF-ligand pairs are called for. In this work, we present Sensbio, a computational tool that through similarity comparison against a TF-ligand reference database, is able to identify putative transcription factors that can be activated by a given input molecule. In addition to the collection of algorithms, an online application has also been developed, together with a predictive model created to find new possible matches based on machine learning.


Subject(s)
Algorithms , Computers , Ligands , Databases, Factual , Gene Regulatory Networks , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...