Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1381, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36914623

ABSTRACT

Lack of reproducibility hampers molecular devices integration into large-scale circuits. Thus, incorporating operando characterization can facilitate the understanding of multiple features producing disparities in different devices. In this work, we report the realization of hybrid molecular graphene field effect transistors (m-GFETs) based on 11-(Ferrocenyl)undecanethiol (FcC11SH) micro self-assembled monolayers (µSAMs) and high-quality graphene (Gr) in a back-gated configuration. On the one hand, Gr enables redox electron transfer, avoids molecular degradation and permits operando spectroscopy. On the other hand, molecular electrode decoration shifts the Gr Dirac point (VDP) to neutrality and generates a photocurrent in the Gr electron conduction regime. Benefitting from this heterogeneous response, the m-GFETs can implement optoelectronic AND/OR logic functions. Our approach represents a step forward in the field of molecular scale electronics with implications in sensing and computing based on sustainable chemicals.

2.
Phys Chem Chem Phys ; 24(16): 9236-9246, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35388844

ABSTRACT

The combination of a reducible transition metal oxide and a noble metal such as Pt often leads to active low-temperature catalysts for the preferential oxidation of CO in excess H2 gas (PROX reaction). While CO oxidation has been investigated for such systems in model studies, the added influence of hydrogen gas, representative of PROX, remains less explored. Herein, we use ambient pressure scanning tunneling microscopy and ambient pressure X-ray photoelectron spectroscopy on a CoOx/Pt(111) planar model catalyst to analyze the active phase and the adsorbed species at the CoOx/Pt(111) interface under atmospheres of CO and O2 with a varying partial pressure of H2 gas. By following the evolution of the Co oxidation state as the catalyst is brought to a reaction temperature of above 150 °C, we determine that the active state is characterized by the transformation from planar CoO with Co in the 2+ state to a mixed Co2+/Co3+ phase at the temperature where CO2 production is first observed. Furthermore, our spectroscopy observations of the surface species suggest a reaction pathway for CO oxidation, proceeding from CO exclusively adsorbed on Co2+ sites reacting with the lattice O from the oxide. Under steady state CO oxidation conditions (CO/O2), the mixed oxide phase is replenished from oxygen incorporating into cobalt oxide nanoislands. In CO/O2/H2, however, the onset of the active Co2+/Co3+ phase formation is surprisingly sensitive to the H2 pressure, which we explain by the formation of several possible hydroxylated intermediate phases that expose both Co2+ and Co3+. This variation, however, has no influence on the temperature where CO oxidation is observed. Our study points to the general importance of a dynamic reducibility window of cobalt oxide, which is influenced by hydroxylation, and the bonding strength of CO to the reduced oxide phase as important parameters for the activity of the system.

3.
Phys Chem Chem Phys ; 24(13): 8022-8031, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35315463

ABSTRACT

We report on the properties of the thin films of the short peptide L-dialanine grown on Cu(100) surfaces and compare them to those of L-alanine by using surface techniques like XPS, IRRAS and STM. The first dialanine monolayer, in contact with the metallic substrate, is found to consist of whole neutral molecules in the non-zwitterionic state forming a c(2 × 4) pattern with quasi-hexagonal symmetry. The peptide bond of dialanine is preserved in the adsorption state. The ordering of the L-dialanine overlayer is shown to replicate rearrangements of the atoms of the substrate around dislocations of the latter indicating a strong molecule-surface interaction. In the multilayer regime, molecules of the second and further layers are found to be in a zwitterionic state, readily desorbing even at room temperature. The first dialanine layer is tightly bound to the substrate, begins to desorb at temperatures higher than 390 K and cracks down at the surface, transforming into a new moiety, beyond 435 K.


Subject(s)
Alanine , Dipeptides , Adsorption , Dipeptides/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...