Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Neurotherapeutics ; 21(1): e00300, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241165

ABSTRACT

Neurodevelopmental disorders (NDs) are neuropsychiatric conditions affecting central nervous system development, characterized by cognitive and behavioural alterations. Inflammation has been recently linked to NDs. Animal models are essential for understanding their pathophysiology and identifying therapeutic targets. Double-hit models can reproduce neurodevelopmental and neuroinflammatory impairments. Sixty-seven newborn rats were assigned to four groups: Control, Maternal deprivation (MD, 24-h-deprivation), Isolation (Iso, 5 weeks), and Maternal deprivation â€‹+ â€‹Isolation (MD â€‹+ â€‹Iso, also known as double-hit). Cognitive dysfunction was assessed using behavioural tests. Inflammasome, MAPKs, and TLRs inflammatory elements expression in the frontal cortex (FC) and hippocampus (HP) was analysed through western blot and qRT-PCR. Oxidative/nitrosative (O/N) evaluation and corticosterone levels were measured in plasma samples. Double-hit group was affected in executive and working memory. Most inflammasomes and TLRs inflammatory responses were increased in FC compared to the control group, whilst MAPKs were downregulated. Conversely, hippocampal inflammasome and inflammatory components were reduced after the double-hit exposure, while MAPKs were elevated. Our findings reveal differential regulation of innate immune system components in FC and HP in the double-hit group. Further investigations on MAPKs are necessary to understand their role in regulating HP neuroinflammatory status, potentially linking our MAPKs results to cognitive impairments through their proliferative and anti-inflammatory activity.


Subject(s)
Frontal Lobe , Inflammasomes , Rats , Animals , Inflammasomes/metabolism , Frontal Lobe/metabolism , Anti-Inflammatory Agents/metabolism , Immune System/metabolism , Hippocampus/metabolism
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37628815

ABSTRACT

Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.


Subject(s)
Immune System , Mental Disorders , Humans , Mental Disorders/drug therapy , Sphingosine , Brain
4.
J Clin Periodontol ; 50(5): 642-656, 2023 05.
Article in English | MEDLINE | ID: mdl-36644813

ABSTRACT

AIM: To explore the potential mechanisms of neuroinflammation (microglia, blood-brain barrier [BBB] permeability, and the sphingosine-1-phosphate [S1P] pathways) resulting from the association between periodontitis and depression in rats. MATERIALS AND METHODS: This pre-clinical in vivo experimental study used Wistar rats, in which experimental periodontitis (P) was induced by using oral gavages with Porphyromonas gingivalis and Fusobacterium nucleatum. Then, a chronic mild stress (CMS) model was implemented to induce a depressive-like behaviour, resulting in four groups: P with CMS (P+CMS+), P without CMS (P+CMS-), CMS without P (P-CMS+), and control (P-CMS-). After harvesting brain samples, protein/mRNA expression analyses and fluorescence immunohistochemistry were performed in the frontal cortex (FC). Results were analysed by ANOVA. RESULTS: CMS exposure increased the number of microglia (an indicator of neuroinflammation) in the FC. In the combined model (P+CMS+), there was a decrease in the expression of tight junction proteins (zonula occludens-1 [ZO-1], occludin) and an increase in intercellular and vascular cell adhesion molecules (ICAM-1, VCAM-1) and matrix metalloproteinase 9 (MMP9), suggesting a more severe disruption of the BBB. The enzymes and receptors of S1P were also differentially regulated. CONCLUSIONS: Microglia, BBB permeability, and S1P pathways could be relevant mechanisms explaining the association between periodontitis and depression.


Subject(s)
Blood-Brain Barrier , Periodontitis , Rats , Animals , Blood-Brain Barrier/metabolism , Rats, Wistar , Neuroinflammatory Diseases , Depression , Periodontitis/metabolism
5.
J Psychiatr Res ; 155: 171-179, 2022 11.
Article in English | MEDLINE | ID: mdl-36041260

ABSTRACT

INTRODUCTION: Social functioning is severely affected in psychotic disorders. Negative symptoms and social cognition seem to play an important role in social functioning, although the preponderance and relationship between these three domains is not clear. In this study, we sought to assess the interrelation between social cognition, social functioning, and the expressiveness and experiential factors of negative symptoms in first-episode psychosis (FEP). SAMPLE AND METHODS: 216 patients, participants in a multicentre study (AGES-CM), comprised our study sample. The WHO Disability Assessment Schedule (WHODAS 2.0) was used to assess functioning, whereas the Positive and Negative Schizophrenia Syndrome Scale (PANSS) was used to measure the severity of negative symptoms, and the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) was applied to assess the emotional processing component of social cognition. Network analyses were conducted with the aim of analysing the patterns of relationships between social cognition, social functioning, and the expressiveness and experiential factors of negative symptoms. RESULTS: Our findings suggest that there is a direct relationship between social cognition and social functioning (weight = -.077), but also an indirect connection between them, mediated by the experiential (but not the expressiveness) factor of negative symptoms (weight = 0.300). DISCUSSION: The importance of the affectation of subdomains of social cognition, as well as the role of negative symptoms, specifically the experiential factor, in the functioning of patients with FEP seems to be relevant. The inclusion of these factors in prevention and treatment programs would thus allow us to reduce their impact on the social functioning of these patients.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Psychotic Disorders/psychology , Schizophrenia/complications , Schizophrenia/diagnosis , Social Adjustment , Social Cognition , Social Interaction
6.
Sci Rep ; 12(1): 4073, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260749

ABSTRACT

The chronic inflammatory process that characterizes inflammatory bowel diseases (IBD) is mainly driven by T-cell response to microbial and environmental antigens. Psychological stress is a potential trigger of clinical flares of IBD, and sphingosine-1-phosphate (S1P) is involved in T-cell recruitment. Hence, stress impact and the absence of sphingosine kinase 2 (Sphk2), an enzyme of S1P metabolism, were evaluated in the colon of mice after sub-chronic stress exposure. Here, we show that sub-chronic stress increased S1P in the mouse colon, possibly due to a decrease in its degradation enzymes and Sphk2. S1P accumulation could lead to inflammation and immune dysregulation reflected by upregulation of toll-like receptor 4 (TLR4) pathway, inhibition of anti-inflammatory mechanisms, cytokine-expression profile towards a T-helper lymphocyte 17 (Th17) polarization, plasmacytosis, decrease in IgA+ lymphoid lineage cells (CD45+)/B cells/plasmablasts, and increase in IgM+ B cells. Stress also enhanced intestinal permeability. Sphk2 knockout mice presented a cytokine-expression profile towards a boosted Th17 response, lower expression of claudin 3,4,7,8, and structural abnormalities in the colon. Intestinal pathophysiology should consider stress and S1P as modulators of the immune response. S1P-based drugs, including Sphk2 potentiation, represent a promising approach to treat IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Phosphotransferases (Alcohol Group Acceptor) , Stress, Psychological , Th17 Cells , Animals , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Cytokines/immunology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Lysophospholipids/metabolism , Mice , Mice, Knockout , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/immunology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sphingosine/metabolism , Stress, Psychological/immunology , Stress, Psychological/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
7.
Schizophr Res ; 235: 17-28, 2021 09.
Article in English | MEDLINE | ID: mdl-34298239

ABSTRACT

Increased dopaminergic activity in the striatum underlies the neurobiology of psychotic symptoms in schizophrenia (SZ). Beyond the impaired connectivity among the limbic system, the excess of dopamine could lead to inflammation and oxidative/nitrosative stress. It has been suggested that atypical antipsychotic drugs attenuate psychosis not only due to their modulatory activity on the dopaminergic/serotonergic neurotransmission but also due to their anti-inflammatory/antioxidant effects. In such a manner, we assessed the effects of the atypical antipsychotic risperidone (RISP) on the structural neuroplasticity and biochemistry of the striatum in adult rats with neonatal ventral hippocampus lesion (NVHL), which is a developmental SZ-related model. RISP administration (0.25 mg/kg, i.p.) ameliorated the neuronal atrophy and the impairments in the morphology of the dendritic spines in the spiny projection neurons (SPNs) of the ventral striatum (nucleus accumbens: NAcc) in the NVHL rats. Also, RISP treatment normalized the pro-inflammatory pathways and induced the antioxidant activity of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in this model. Our results point to the neurotrophic, anti-inflammatory, and antioxidant effects of RISP, together with its canonical antipsychotic mechanism, to enhance striatum function in animals with NVHL.


Subject(s)
Antipsychotic Agents , Schizophrenia , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Neuronal Plasticity , Nucleus Accumbens , Rats , Risperidone/pharmacology , Risperidone/therapeutic use , Schizophrenia/drug therapy
8.
Inflamm Bowel Dis ; 27(10): 1661-1673, 2021 10 18.
Article in English | MEDLINE | ID: mdl-33609028

ABSTRACT

BACKGROUND: Liver X receptor (LXR) exerts anti-inflammatory effects in macrophages. The aim of this study was to explore the expression and function of LXR in the colonic epithelium under inflammatory conditions. METHODS: The expression of LXR was explored by Western blot and immunohistochemistry in colonic biopsies from patients diagnosed with inflammatory bowel disease (IBD) and control patients. In addition, LXR and its target gene expression were analyzed in the colon from interleukin (IL)-10-deficient (IL-10-/-) and wild-type mice. Caco-2 cells were pretreated with the synthetic LXR agonist GW3965 and further challenged with IL-1ß, the expression of IL-8 and chemokine (C-C motif) ligand (CCL)-28 chemokines, the activation of mitogen-activated protein (MAP) kinases, and the nuclear translocation of the p65 subunit of nuclear factor kappa B was evaluated. Glibenclamide was used as an ABCA1 antagonist. RESULTS: We found that LXR expression was downregulated in colonic samples from patients with IBD and IL-10-/- mice. The nuclear positivity of LXR inversely correlated with ulcerative colitis histologic activity. Colonic IL-1ß mRNA levels negatively correlated with both LXRα and LXRß in the colon of IL-10-/- mice, where a decreased mRNA expression of the LXR target genes ABCA1 and FAS was shown. In addition, IL-1ß decreased the expression of the LXR target gene ABCA1 in cultured intestinal epithelial cells. The synthetic LXR agonist GW3965 led to a decreased nuclear positivity of the p65 subunit of nuclear factor kappa B, a phosphorylation ratio of the p44-42 MAP kinase, and the expression of CCL-28 and IL-8 in IL-1ß-stimulated Caco-2 cells. The pharmacological inhibition of ABCA1 increased the phosphorylation of p44-42 after GW3965 treatment and IL-1ß stimulation. CONCLUSIONS: The LXR-ABCA1 pathway exerts anti-inflammatory effects in intestinal epithelial cells and is impaired in the colonic mucosa of patients with IBD and IL-10-/- mice.


Subject(s)
Colitis , Inflammatory Bowel Diseases , ATP Binding Cassette Transporter 1/chemistry , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Anti-Inflammatory Agents , Caco-2 Cells , Colitis/chemically induced , Colitis/drug therapy , Epithelial Cells , Humans , Inflammatory Bowel Diseases/drug therapy , Interleukin-10 , Interleukin-8/genetics , Interleukin-8/metabolism , Liver X Receptors , Mice , NF-kappa B , Orphan Nuclear Receptors/genetics , RNA, Messenger
9.
J Clin Periodontol ; 48(4): 503-527, 2021 04.
Article in English | MEDLINE | ID: mdl-33432590

ABSTRACT

AIM: To analyse, through a pre-clinical in vivo model, the possible mechanisms linking depression and periodontitis at behavioural, microbiological and molecular levels. MATERIALS AND METHODS: Periodontitis (P) was induced in Wistar:Han rats (oral gavages with Porphyromonas gingivalis and Fusobacterium nucleatum) during 12 weeks, followed by a 3-week period of Chronic Mild Stress (CMS) induction. Four groups (n = 12 rats/group) were obtained: periodontitis and CMS (P+CMS+); periodontitis without CMS; CMS without periodontitis; and control. Periodontal clinical variables, alveolar bone levels (ABL), depressive-like behaviour, microbial counts and expression of inflammatory mediators in plasma and brain frontal cortex (FC), were measured. ANOVA tests were applied. RESULTS: The highest values for ABL occurred in the P+CMS+ group, which also presented the highest expression of pro-inflammatory mediators (TNF-α, IL-1ß and NF-kB) in frontal cortex, related to the lipoprotein APOA1-mediated transport of bacterial lipopolysaccharide to the brain and the detection of F. nucleatum in the brain parenchyma. A dysregulation of the hypothalamic-pituitary-adrenal stress axis, reflected by the increase in plasma corticosterone and glucocorticoid receptor levels in FC, was also found in this group. CONCLUSIONS: Neuroinflammation induced by F. nucleatum (through a leaky mouth) might act as the linking mechanism between periodontal diseases and depression.


Subject(s)
Depression , Periodontal Diseases , Animals , Fusobacterium nucleatum , Porphyromonas gingivalis , Rats , Rats, Wistar
10.
Biochem Pharmacol ; 185: 114433, 2021 03.
Article in English | MEDLINE | ID: mdl-33513342

ABSTRACT

Major Depression is a severe psychiatric condition with a still poorly understood etiology. In the last years, evidence supporting the neuroinflammatory hypothesis of depression has increased. In the current clinical scenario, in which the available treatments for depression is far from optimal, there is an urgent need to develop fast-acting drugs with fewer side effects. In this regard, recent pieces of evidence suggest that cannabidiol (CBD), the major non-psychotropic component of Cannabis sativa with anti-inflammatory properties, appears as a drug with antidepressant properties. In this work, CBD 30 mg/kg was administered systemically to mice 30 min before lipopolysaccharide (LPS; 0.83 mg/kg) administration as a neuroinflammatory model, and behavioral tests for depressive-, anhedonic- and anxious-like behavior were performed. NF-ĸB, IκBα and PPARγ levels were analyzed by western blot in nuclear and cytosolic fractions of cortical samples. IL-6 and TNFα levels were determined in plasma and prefrontal cortex using ELISA and qPCR techniques, respectively. The precursor tryptophan (TRP), and its metabolites kynurenine (KYN) and serotonin (5-HT) were measured in hippocampus and cortex by HPLC. The ratios KYN/TRP and KYN/5-HT were used to estimate indoleamine 2,3-dioxygenase (IDO) activity and the balance of both metabolic pathways, respectively. CBD reduced the immobility time in the tail suspension test and increased sucrose preference in the LPS model, without affecting locomotion and central activity in the open-field test. CBD diminished cortical NF-ĸB activation, IL-6 levels in plasma and brain, and the increased KYN/TRP and KYN/5-HT ratios in hippocampus and cortex in the LPS model. Our results demonstrate that CBD produced antidepressant-like effects in the LPS neuroinflammatory model, associated to a reduction in the kynurenine pathway activation, IL-6 levels and NF-ĸB activation. As CBD stands out as a promising antidepressant drug, more research is needed to completely understand its mechanisms of action in depression linked to inflammation.


Subject(s)
Antidepressive Agents/therapeutic use , Cannabidiol/therapeutic use , Depression/drug therapy , Depression/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Animals , Antidepressive Agents/pharmacology , Cannabidiol/pharmacology , Depression/chemically induced , Hindlimb Suspension/adverse effects , Hindlimb Suspension/psychology , Inflammation Mediators/antagonists & inhibitors , Male , Mice
11.
Int Immunopharmacol ; 90: 107217, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33290967

ABSTRACT

Several stress-related neuropsychiatric diseases are related to inflammatory phenomena. Thus, a better understanding of stress-induced immune responses could lead to enhanced treatment alternatives. Little is known about the possible involvement of inflammasomes in the stress-induced proinflammatory response. Antipsychotics have anti-inflammatory effects, but the possible antipsychotic treatment actions on inflammasomes remain unexplored. Our aim was to study whether inflammasomes are involved in the neuroinflammation induced by a paradigmatic model of chronic stress and whether the monoamine receptor antagonist paliperidone can modulate the possible stress-induced inflammasomes activation in the frontal cortex (FC). Thus, the effects of paliperidone (1 mg/Kg, oral gavage) administered during a chronic restraint stress protocol (6 h/day for 21 days) on the possible stress-related inflammasomes protein induction were evaluated through Western blot in the FC of male Wistar rats. Stress increased protein expression levels of the inflammasome complexes NALP1, NLRP3 and AIM2 and augmented caspase-1 and mature interleukin (IL)-1ß protein levels. Paliperidone pre-treatment normalized the protein expression of the inflammasome pathway. In conclusion, our data indicate an induction of inflammasome complexes by chronic restraint stress in the FC of rats. The antipsychotic paliperidone has an inhibitory action on some of the stress-induced inflammasomes stimulation trying to normalize the neuroinflammatory scenario caused by stress. Considering the emerging role of inflammation in neuropsychiatric diseases, the development of new drugs targeting inflammasome pathways is a promising approach for future therapeutic interventions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antipsychotic Agents/pharmacology , Frontal Lobe/drug effects , Inflammasomes/metabolism , Paliperidone Palmitate/pharmacology , Stress, Psychological/drug therapy , Animals , Caspase 1/metabolism , Chronic Disease , DNA-Binding Proteins/metabolism , Disease Models, Animal , Frontal Lobe/immunology , Frontal Lobe/metabolism , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nerve Tissue Proteins/metabolism , Rats, Wistar , Restraint, Physical , Stress, Psychological/immunology , Stress, Psychological/metabolism , Stress, Psychological/psychology
12.
FASEB J ; 33(11): 12900-12914, 2019 11.
Article in English | MEDLINE | ID: mdl-31509716

ABSTRACT

Inflammatory processes have been shown to modify tryptophan (Trp) metabolism. Gut microbiota appears to play a significant role in the induction of peripheral and central inflammation. Ethanol (EtOH) exposure alters gut permeability, but its effects on Trp metabolism and the involvement of gut microbiota have not been studied. We analyzed several parameters of gut-barrier and of peripheral and central Trp metabolism following 2 different EtOH consumption patterns in mice, the binge model, drinking in the dark (DID), and the chronic intermittent (CI) consumption paradigm. Antibiotic treatment was used to evaluate gut microbiota involvement in the CI model. Mice exposed to CI EtOH intake, but not DID, show bacterial translocation and increased plasma LPS immediately after EtOH removal. Gut-barrier permeability to FITC-dextran is increased by CI, and, furthermore, intestinal epithelial tight-junction (TJ) disruption is observed (decreased expression of zonula occludens 1 and occludin) associated with increased matrix metalloproteinase (MMP)-9 activity and iNOS expression. CI EtOH, but not DID, increases kynurenine (Kyn) levels in plasma and limbic forebrain. Intestinal bacterial decontamination prevents the LPS increase but not the permeability to FITC-dextran, TJ disruption, or the increase in MMP-9 activity and iNOS expression. Although plasma Kyn levels are not affected by antibiotic treatment, the elevation of Kyn in brain is prevented, pointing to an involvement of microbiota in CI EtOH-induced changes in brain Trp metabolism. Additionally, CI EtOH produces depressive-like symptoms of anhedonia, which are prevented by the antibiotic treatment thus pointing to an association between anhedonia and the increase in brain Kyn and to the involvement of gut microbiota.-Giménez-Gómez, P., Pérez-Hernández, M., O'Shea, E., Caso, J. R., Martín-Hernández, D., Cervera, L. A., Centelles. M. L. G.-L., Gutiérrez-Lopez, M. D., Colado, M. I. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice.


Subject(s)
Brain/metabolism , Ethanol/toxicity , Gastrointestinal Microbiome/drug effects , Kynurenine/metabolism , Animals , Behavior, Animal/drug effects , Ethanol/administration & dosage , Male , Mice , Mice, Inbred C57BL
13.
J Neurosci ; 39(43): 8584-8599, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31519825

ABSTRACT

Reduction of the dendritic arbor length and the lack of dendritic spines in the pyramidal cells of the prefrontal cortex (PFC) are prevalent pathological features in schizophrenia (SZ). Neonatal ventral hippocampus lesion (NVHL) in male rats reproduces these neuronal characteristics and here we describe how this is a consequence of BDNF/TrkB pathway disruption. Moreover, COX-2 proinflammatory state, as well as Nrf-2 antioxidant impairment, triggers oxidative/nitrosative stress, which also contributes to dendritic spine impairments in the PFC. Interestingly, oxidative/nitrosative stress was also detected in the periphery of NVHL animals. Furthermore, risperidone treatment had a neurotrophic effect on the PFC and antioxidant effects on the brain and periphery of NVHL animals; these cellular effects were related to behavioral improvement. Our data highlight the link between brain development and immune response, as well as several other factors to understand mechanisms related to the pathophysiology of SZ.SIGNIFICANCE STATEMENT Prefrontal cortex dysfunction in schizophrenia can be a consequence of morphological abnormalities and oxidative/nitrosative stress, among others. Here, we detailed how impaired plasticity-related pathways and oxidative/nitrosative stress are part of the dendritic spine pathology and their modulation by atypical antipsychotic risperidone treatment in rats with neonatal ventral hippocampus lesion. Moreover, we found that animals with neonatal ventral hippocampus lesion had oxidative/nitrosative stress in the brain as well as in the peripheral blood, an important issue for the translational approaches of this model. Then, risperidone restored plasticity and reduced oxidative/nitrosative stress of prefrontal cortex pyramidal cells, and ultimately improved the behavior of lesioned animals. Moreover, risperidone had differential effects than the brain on peripheral blood oxidative/nitrosative stress.


Subject(s)
Antipsychotic Agents/therapeutic use , Atrophy/drug therapy , Hippocampus/pathology , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Prefrontal Cortex/pathology , Risperidone/therapeutic use , Animals , Antipsychotic Agents/pharmacology , Atrophy/metabolism , Atrophy/pathology , Dendritic Spines/metabolism , Hippocampus/metabolism , Male , Prefrontal Cortex/metabolism , Rats , Risperidone/pharmacology
14.
Mol Neurobiol ; 56(11): 7522-7533, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31054078

ABSTRACT

The standard pharmacological treatment of the major depressive disorder (MDD) is still grounded in a monoaminergic approach. Consequently, antidepressant treatments pursue to heighten serotonergic and noradrenergic neurotransmissions. Thus, the aim of this study was to assess the impact of exposure to a well-characterized animal model, the chronic mild stress (CMS) on serotonin (5-HT) and noradrenaline (NE) levels, and reuptake transporters and receptors in the frontal cortex (FC) of CMS-exposed rats. Moreover, considering the diverse pharmacological profiles of existing antidepressants and the large number of patients not responding to treatments, we have investigated whether generally utilized antidepressants can modulate their expression. Male Wistar rats were exposed to CMS and some of them treated with desipramine, escitalopram, or duloxetine. Possible changes in the described monoaminergic neurotransmission elements were evaluated. CMS induced differences in the expression of reuptake transporters and receptors involved in the monoaminergic neurotransmission pointing towards the weakening of their signaling. CMS antidepressant-treated rats showed an improvement of the monoaminergic tone, being desipramine and duloxetine more influential than escitalopram over noradrenergic elements and having the three antidepressant-tested effects on serotonergic transmission. In summary, there are molecular alterations on the monoaminergic neurotransmission in FC induced by CMS exposure. Besides, antidepressant treatments modulate the elements of these neurotransmission systems differentially.


Subject(s)
Antidepressive Agents/therapeutic use , Biogenic Monoamines/metabolism , Frontal Lobe/pathology , Stress, Psychological/drug therapy , Animals , Antidepressive Agents/pharmacology , Chronic Disease , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Male , Membrane Transport Proteins/metabolism , Models, Biological , Norepinephrine/metabolism , Rats, Wistar , Receptors, Adrenergic/metabolism , Receptors, Serotonin/metabolism , Serotonin/metabolism
15.
Brain Behav Immun ; 80: 204-218, 2019 08.
Article in English | MEDLINE | ID: mdl-30872094

ABSTRACT

BACKGROUND: Sickness behavioral changes elicited by inflammation may become prolonged and dysfunctional in patients with chronic disease, such as chronic hepatitis C (CHC). Neuroimaging studies show that the basal ganglia and insula are sensitive to systemic inflammation. AIM: To elucidate the clinical and neurobiological aspects of prolonged illnesses in patients with CHC. METHODS: Thirty-five CHC patients not treated with interferon-α or other antiviral therapy, and 30 control subjects matched for age and sex, were evaluated for perceived stress (perceived stress scale; PSS), depression (PHQ-9), fatigue and irritability through a visual analog scale (VAS), as well as serum levels of interleukin-6 (IL-6), prostaglandin E2 (PGE2) and oxidative stress markers. Functional MRI was performed, measuring resting-state functional connectivity using a region-of-interest (seed)-based approach focusing on the bilateral insula, subgenual anterior cingulate cortex and bilateral putamen. Between-group differences in functional connectivity patterns were assessed with two-sample t-tests, while the associations between symptoms, inflammatory markers and functional connectivity patterns were analyzed with multiple regression analyses. RESULTS: CHC patients had higher PSS, PHQ-9 and VAS scores for fatigue and irritability, as well as increased IL-6 levels, PGE2 concentrations and antioxidant system activation compared to controls. PSS scores positively correlated with functional connectivity between the right anterior insula and right putamen, whereas PHQ-9 scores correlated with functional connectivity between most of the seeds and the right anterior insula. PGE2 (positively) and IL-6 (negatively) correlated with functional connectivity between the right anterior insula and right caudate nucleus and between the right ventral putamen and right putamen/globus pallidus. PGE2 and PSS scores accounted for 46% of the variance in functional connectivity between the anterior insula and putamen. CONCLUSIONS: CHC patients exhibited increased perceived stress and depressive symptoms, which were associated with changes in inflammatory marker levels and in functional connectivity between the insula and putamen, areas involved in interoceptive integration, emotional awareness, and orientation of motivational state.


Subject(s)
Hepatitis C, Chronic/immunology , Interoception/physiology , Stress, Psychological/immunology , Adult , Brain/physiopathology , Brain Mapping/methods , Cerebral Cortex/physiopathology , Connectome/methods , Emotions , Female , Gyrus Cinguli/physiopathology , Hepatitis C/immunology , Hepatitis C/physiopathology , Hepatitis C, Chronic/physiopathology , Humans , Inflammation/immunology , Magnetic Resonance Imaging/methods , Male , Middle Aged , Nerve Net/physiopathology , Neural Pathways/physiopathology , Neurons/metabolism
16.
Mol Neurobiol ; 56(1): 490-501, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29725904

ABSTRACT

Immune stimulation might be involved in the pathophysiology of major depressive disorder (MDD). This stimulation induces indoleamine 2,3-dioxygenase (IDO), an enzyme that reduces the tryptophan bioavailability to synthesize serotonin. IDO products, kynurenine metabolites, exert neurotoxic/neuroprotective actions through glutamate receptors. Thus, we study elements of these pathways linked to kynurenine metabolite activity examining whether antidepressants (ADs) can modulate them. Male Wistar rats were exposed to chronic mild stress (CMS), and some of them were treated with ADs. The expression of elements of the IDO pathway, including kynurenine metabolites, and their possible modulation by ADs was studied in the frontal cortex (FC). CMS increased IDO expression in FC compared to control group, and ADs restored the IDO expression levels to control values. CMS-induced IDO expression led to increased levels of the excitotoxic quinolinic acid (QUINA) compared to control, and ADs prevented the rise in such levels. Neither CMS nor ADs changed significantly the antiexcitotoxic kynurenic acid (KYNA) levels. The QUINA/KYNA ratio, calculated as excitotoxicity risk indicator, increased after CMS and ADs prevented this increase. CMS lowered excitatory amino acid transporter (EAAT)-1 and EAAT-4 expression, and some ADs restored their expression levels. Furthermore, CMS decreased N-methyl-D-aspartate receptor (NMDAR)-2A and 2B protein expression, and ADs mitigated this decrease. Our research examines the link between CMS-induced pro-inflammatory cytokines and the kynurenine pathway; it shows that CMS alters the kynurenine pathway in rat FC. Importantly, it also reveals the ability of classic ADs to prevent potentially harmful situations related to the brain scenario caused by CMS.


Subject(s)
Frontal Lobe/pathology , Frontal Lobe/physiopathology , Glutamic Acid/metabolism , Kynurenine/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Synaptic Transmission , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Chronic Disease , Cytokines/metabolism , Frontal Lobe/drug effects , Glutamate Plasma Membrane Transport Proteins/genetics , Glutamate Plasma Membrane Transport Proteins/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation Mediators/metabolism , Kynurenic Acid/metabolism , Male , Metabolic Networks and Pathways/drug effects , Quinolinic Acid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Stress, Psychological/drug therapy , Synaptic Transmission/drug effects , Tryptophan/metabolism
17.
J Neuroinflammation ; 15(1): 251, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30180869

ABSTRACT

BACKGROUND: Studies show that Toll-like receptors (TLRs), members of the innate immune system, might participate in the pathogenesis of the major depressive disorder (MDD). However, evidence of this participation in the brain of patients with MDD has been elusive. METHODS: This work explores whether the protein expression by immunodetection assays (Western blot) of elements of TLR-4 pathways controlling inflammation and the oxidative/nitrosative stress are altered in postmortem dorsolateral prefrontal cortex of subjects with MDD. The potential modulation induced by the antidepressant treatment on these parameters was also assessed. Thirty MDD subjects (15 antidepressant-free and 15 under antidepressant treatment) were matched for gender and age to 30 controls in a paired design. RESULTS: No significant changes in TLR-4 expression were detected. An increased expression of the TLR-4 endogenous ligand Hsp70 (+ 33%), but not of Hsp60, and the activated forms of mitogen-activated protein kinases (MAPKs) p38 (+ 47%) and JNK (+ 56%) was observed in MDD. Concomitantly, MDD subjects present a 45% decreased expression of DUSP2 (a regulator of MAPKs) and reduced (- 21%) expression of the antioxidant nuclear factor Nrf2. Antidepressant treatment did not modify the changes detected in the group with MDD and actually increased (+ 25%) the expression of p11, a protein linked with the transport of neurotransmitters and depression. CONCLUSION: Data indicate an altered TLR-4 immune response in the brain of subjects with MDD. Additional research focused on the mechanisms contributing to the antidepressant-induced TLR-4 pathway modulation is warranted and could help to develop new treatment strategies for MDD.


Subject(s)
Antidepressive Agents/therapeutic use , Antioxidants/metabolism , Depressive Disorder, Major , Frontal Lobe , Inflammation/drug therapy , Signal Transduction/drug effects , Analysis of Variance , Annexin A2/metabolism , Autopsy , Chaperonin 60/metabolism , DNA-Binding Proteins/metabolism , Depressive Disorder, Major/complications , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/pathology , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Frontal Lobe/pathology , Humans , Inflammation/metabolism , NF-kappa B/metabolism , S100 Proteins/metabolism , Signal Transduction/physiology , Toll-Like Receptor 4/metabolism , Transcription Factors/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Neurotherapeutics ; 13(4): 833-843, 2016 10.
Article in English | MEDLINE | ID: mdl-27233514

ABSTRACT

Alterations in the innate inflammatory response may underlie the pathophysiology of psychiatric diseases. Current antipsychotics modulate pro-/anti-inflammatory pathways, but their specific actions on these pathways remain only partly explored. This study was conducted to elucidate the regulatory role of paliperidone (1 mg/kg i.p.) on acute (6 h) and chronic (6 h/day for 21 consecutive days) restraint stress-induced alterations in 2 emerging endogenous anti-inflammatory/antioxidant mechanisms: nuclear factor erythroid-related factor 2 (NRF2)/antioxidant enzymes pathway, and the cytokine milieu regulating M1/M2 polarization in microglia, analyzed at the mRNA and protein levels in prefrontal cortex samples. In acute stress conditions, paliperidone enhanced NRF2 levels, possibly related to phosphoinositide 3-kinase upregulation and reduced kelch-Like ECH-associated protein 1 expression. In chronic conditions, paliperidone tended to normalize NRF2 levels through a phosphoinositide 3-kinase related-mechanism, with no effects on kelch-Like ECH-associated protein 1. Antioxidant response element-dependent antioxidant enzymes were upregulated by paliperidone in acute stress, while in chronic stress, paliperidone tended to prevent stress-induced downregulation of the endogenous antioxidant machinery. However, paliperidone increased transforming growth factor-ß and interleukin-10 in favor of an M2 microglia profile in acute stress conditions, which was also corroborated by paliperidone-induced increased levels of the M2 cellular markers arginase I and folate receptor 2. This latter effect was also produced in chronic conditions. Immunofluorescence studies suggested an increase in the number of microglial cells expressing arginase I and folate receptor 2 in the stressed animals pretreated with paliperidone. In conclusion, the enhancement of endogenous antioxidant/anti-inflammatory pathways by current and new antipsychotics could represent an interesting therapeutic strategy for the future.


Subject(s)
Antioxidants/metabolism , Cytokines/metabolism , Paliperidone Palmitate/pharmacology , Paliperidone Palmitate/therapeutic use , Signal Transduction/drug effects , Stress, Psychological/drug therapy , Up-Regulation/drug effects , Aldehydes/metabolism , Analysis of Variance , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Catalase/genetics , Catalase/metabolism , Cytokines/genetics , Disease Models, Animal , Male , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Restraint, Physical/adverse effects , Stress, Psychological/etiology , Superoxide Dismutase/metabolism , Time Factors
19.
Neuropharmacology ; 103: 79-91, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26686388

ABSTRACT

Patients with major depression who are otherwise medically healthy have activated inflammatory pathways in their organism. It has been described that depression is not only escorted by inflammation but also by induction of multiple oxidative/nitrosative stress pathways. Nevertheless, there are finely regulated mechanisms involved in preserving cells from damage, such as the antioxidant nuclear transcription factor Nrf2. We aim to explore in a depression-like model the Nrf2 pathway in the prefrontal cortex (PFC) and the hippocampus of rats and to analyze whether antidepressants affect the antioxidant activity of the Nrf2 pathway. Male Wistar rats were exposed to chronic mild stress (CMS) and some of them were treated with desipramine, escitalopram or duloxetine. We studied the expression of upstream and downstream elements of the Nrf2 pathway and the oxidative damage induced by the CMS. After CMS, there is an inhibition of upstream and downstream elements of the Nrf2 pathway in the PFC (e.g. PI3K/Akt, GPx…). Moreover, antidepressant treatments, particularly desipramine and duloxetine, are able to recover some of these elements and to reduce the oxidative damage induced by the CMS. However, in the hippocampus, Nrf2 pathways are not that affected and antidepressants do not have many actions. In conclusion, Nrf2 pathway is differentially regulated by antidepressants in the PFC and hippocampus. The Nrf2 pathway is involved in the oxidative/nitrosative damage detected in the PFC and antidepressants have a therapeutic action through this pathway. However, it seems that Nrf2 is not involved in the effects caused by CMS in the hippocampus.


Subject(s)
Antidepressive Agents/administration & dosage , Depressive Disorder/metabolism , Hippocampus/metabolism , NF-E2-Related Factor 2/metabolism , Prefrontal Cortex/metabolism , Signal Transduction/drug effects , Stress, Psychological/metabolism , Animals , Antioxidants/metabolism , Corticosterone/blood , Disease Models, Animal , Hippocampus/drug effects , Lipid Peroxidation/drug effects , Male , Nitrites/blood , Oxidative Stress/drug effects , PPAR gamma/metabolism , Prefrontal Cortex/drug effects , Rats , Rats, Wistar
20.
Neuropharmacology ; 103: 122-33, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26686392

ABSTRACT

Recent studies have suggested that depression is accompanied by an increased intestinal permeability which would be related to the inflammatory pathophysiology of the disease. This study aimed to evaluate whether experimental depression presents with bacterial translocation that in turn can lead to the TLR-4 in the brain affecting the mitogen-activated protein kinases (MAPK) and antioxidant pathways. Male Wistar rats were exposed to chronic mild stress (CMS) and the intestinal integrity, presence of bacteria in tissues and plasma lipopolysaccharide levels were analyzed. We also studied the expression in the prefrontal cortex of activated forms of MAPK and some of their activation controllers and the effects of CMS on the antioxidant Nrf2 pathway. Our results indicate that after exposure to a CMS protocol there is increased intestinal permeability and bacterial translocation. CMS also increases the expression of the activated form of the MAPK p38 while decreasing the expression of the antioxidant transcription factor Nrf2. The actions of antibiotic administration to prevent bacterial translocation on elements of the MAPK and Nrf2 pathways indicate that the translocated bacteria are playing a role in these effects. In effect, our results propose a role of the translocated bacteria in the pathophysiology of depression through the p38 MAPK pathway which could aggravate the neuroinflammation and the oxidative/nitrosative damage present in this pathology. Moreover, our results reveal that the antioxidant factor Nrf2 and its activators may be involved in the consequences of the CMS on the brain.


Subject(s)
Bacterial Translocation , Depressive Disorder/metabolism , Depressive Disorder/microbiology , Encephalitis/metabolism , Encephalitis/microbiology , Microbiota , Signal Transduction , Animals , Anti-Bacterial Agents/administration & dosage , Bacterial Translocation/drug effects , Lipopolysaccharides/blood , MAP Kinase Signaling System/drug effects , Male , NF-E2-Related Factor 2/metabolism , Neuroglia/metabolism , Neurons/metabolism , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Stress, Psychological , Tight Junction Proteins/metabolism , Toll-Like Receptor 4/metabolism , Zonula Occludens-1 Protein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...