Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Astrophys J Lett ; 912(1)2021 May 01.
Article in English | MEDLINE | ID: mdl-34257894

ABSTRACT

The chemical compounds carrying the thiol group (-SH) have been considered essential in recent prebiotic studies regarding the polymerization of amino acids. We have searched for this kind of compounds toward the Galactic Centre quiescent cloud G+0.693-0.027. We report the first detection in the interstellar space of the trans-isomer of monothioformic acid (t-HC(O)SH) with an abundance of ~ 1 × 10-10. Additionally, we provide a solid confirmation of the gauche isomer of ethyl mercaptan (g-C2H5SH) with an abundance of ~ 3 × 10-10, and we also detect methyl mercaptan (CH3SH) with an abundance of ~ 5 × 10-9. Abundance ratios were calculated for the three SH-bearing species and their OH-analogues, revealing similar trends between alcohols and thiols with increasing complexity. Possible chemical routes for the interstellar synthesis of t-HC(O)SH, CH3SH and C2H5SH are discussed, as well as the relevance of these compounds in the synthesis of prebiotic proteins in the primitive Earth.

2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34031247

ABSTRACT

Cell membranes are a key element of life because they keep the genetic material and metabolic machinery together. All present cell membranes are made of phospholipids, yet the nature of the first membranes and the origin of phospholipids are still under debate. We report here the presence of ethanolamine in space, [Formula: see text]OH, which forms the hydrophilic head of the simplest and second-most-abundant phospholipid in membranes. The molecular column density of ethanolamine in interstellar space is N = (1.51[Formula: see text]0.07)[Formula: see text], implying a molecular abundance with respect to [Formula: see text] of [Formula: see text] Previous studies reported its presence in meteoritic material, but they suggested that it is synthesized in the meteorite itself by decomposition of amino acids. However, we find that the proportion of the molecule with respect to water in the interstellar medium is similar to the one found in the meteorite ([Formula: see text]). These results indicate that ethanolamine forms efficiently in space and, if delivered onto early Earth, could have contributed to the assembling and early evolution of primitive membranes.


Subject(s)
Ethanolamine/analysis , Exobiology , Meteoroids
3.
Astrobiology ; 20(9): 1048-1066, 2020 09.
Article in English | MEDLINE | ID: mdl-32283036

ABSTRACT

In the past decade, astrochemistry has witnessed an impressive increase in the number of detections of complex organic molecules. Some of these species are of prebiotic interest such as glycolaldehyde, the simplest sugar, or aminoacetonitrile, a possible precursor of glycine. Recently, we have reported the detection of two new nitrogen-bearing complex organics, glycolonitrile and Z-cyanomethanimine, known to be intermediate species in the formation process of ribonucleotides within theories of a primordial RNA-world for the origin of life. In this study, we present deep and high-sensitivity observations toward two of the most chemically rich sources in the galaxy: a giant molecular cloud in the center of the Milky Way (G + 0.693-0.027) and a proto-Sun (IRAS16293-2422 B). Our aim is to explore whether the key precursors considered to drive the primordial RNA-world chemistry are also found in space. Our high-sensitivity observations reveal that urea is present in G + 0.693-0.027 with an abundance of ∼5 × 10-11. This is the first detection of this prebiotic species outside a star-forming region. Urea remains undetected toward the proto-Sun IRAS16293-2422 B (upper limit to its abundance of ≤2 × 10-11). Other precursors of the RNA-world chemical scheme such as glycolaldehyde or cyanamide are abundant in space, but key prebiotic species such as 2-amino-oxazole, glyceraldehyde, or dihydroxyacetone are not detected in either source. Future more sensitive observations targeting the brightest transitions of these species will be needed to disentangle whether these large prebiotic organics are certainly present in space.


Subject(s)
Evolution, Chemical , Extraterrestrial Environment/chemistry , Origin of Life , RNA/chemical synthesis , Ribonucleotides/chemical synthesis , Exobiology/methods , Monosaccharides/analysis , Monosaccharides/chemistry , Oxazoles/analysis , Oxazoles/chemistry , RNA/biosynthesis , Urea/analysis , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...