Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Struct Funct ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969933

ABSTRACT

Attention is a heterogeneous function theoretically divided into different systems. While functional magnetic resonance imaging (fMRI) has extensively characterized their functioning, the role of white matter in cognitive function has gained recent interest due to diffusion-weighted imaging advancements. However, most evidence relies on correlations between white matter properties and behavioral or cognitive measures. This study used a new method that combines the signal from distant voxels of fMRI images using the probability of structural connection given by high-resolution normative tractography. We analyzed three fMRI datasets with a visual perceptual task and three attentional manipulations: phasic alerting, spatial orienting, and executive attention. The phasic alerting network engaged temporal areas and their communication with frontal and parietal regions, with left hemisphere dominance. The orienting network involved bilateral fronto-parietal and midline regions communicating by association tracts and interhemispheric fibers. The executive attention network engaged a broad set of brain regions and white matter tracts connecting them, with a particular involvement of frontal areas and their connections with the rest of the brain. These results partially confirm and extend previous knowledge on the neural substrates of the attentional system, offering a more comprehensive understanding through the integration of structure and function.

2.
Neuropsychologia ; 184: 108561, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37031951

ABSTRACT

Adaptive behavior requires the ability to orient attention to the moment in time at which a relevant event is likely to occur. Temporal orienting of attention has been consistently associated with activation of the left intraparietal sulcus (IPS) in prior fMRI studies. However, a direct test of its causal involvement in temporal orienting is still lacking. The present study tackled this issue by transiently perturbing left IPS activity with either online (Experiment 1) or offline (Experiment 2) transcranial magnetic stimulation (TMS). In both experiments, participants performed a temporal orienting task, alternating between blocks in which a temporal cue predicted when a subsequent target would appear and blocks in which a neutral cue provided no information about target timing. In Experiment 1 we used an online TMS protocol, aiming to interfere specifically with cue-related temporal processes, whereas in Experiment 2 we employed an offline protocol whereby participants performed the temporal orienting task before and after receiving TMS. The right IPS and/or the vertex were stimulated as active control regions. While results replicated the canonical pattern of temporal orienting effects on reaction time, with faster responses for temporal than neutral trials, these effects were not modulated by TMS over the left IPS (as compared to the right IPS and/or vertex regions) regardless of the online or offline protocol used. Overall, these findings challenge the causal role of the left IPS in temporal orienting of attention inviting further research on its underlying neural substrates.


Subject(s)
Brain Mapping , Transcranial Magnetic Stimulation , Humans , Brain Mapping/methods , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Reaction Time/physiology , Magnetic Resonance Imaging
3.
Cortex ; 134: 1-15, 2021 01.
Article in English | MEDLINE | ID: mdl-33248337

ABSTRACT

The executive control network is involved in novel situations or those in which prepotent responses need to be overridden. Previous studies have demonstrated that when control is exerted, conscious perception is impaired, and this effect is related to the functional connectivity of fronto-parietal regions. In the present study, we explored the causal involvement of one of the nodes of this fronto-parietal network (the right Supplementary Motor Area, SMA) in the interaction between executive control and conscious perception. Participants performed a dual task in which they responded to a Stroop task while detecting the presence/absence of a near-threshold Gabor stimulus. Concurrently, transcranial magnetic stimulation (TMS) was applied over the right SMA or a control site (vertex; Experiment 1). As a further control, the right Frontal Eye Field (FEF) was stimulated in Experiment 2. Diffusion-weighted imaging (DWI) tractography was used to isolate the three branches of the superior longitudinal fasciculus (SLF I, II and III), and the frontal aslant tract (FAT), and to explore if TMS effects were related to their micro- and macrostructural characteristics. Results demonstrated reduced perceptual sensitivity on incongruent as compared to congruent Stroop trials. A causal role of the right SMA on the modulation of perceptual sensitivity by executive control was only demonstrated when the microstructure of the right SLF III or the left FAT were taken into account. The volume of the right SLF III was also related to the modulation of response criterion by executive control when the right FEF was stimulated. These results add evidence in favor of shared neural correlates for attention and conscious perception in fronto-parietal regions and highlight the role of white matter in TMS effects.


Subject(s)
Executive Function , Transcranial Magnetic Stimulation , Brain Mapping , Consciousness , Humans , Magnetic Resonance Imaging , Parietal Lobe/diagnostic imaging , Perception
4.
Cereb Cortex ; 29(2): 648-656, 2019 02 01.
Article in English | MEDLINE | ID: mdl-29300881

ABSTRACT

Phasic alertness facilitates conscious perception through a fronto-striatal network, including the supplementary motor area (SMA). The functioning of the ventral attentional network has been related to the alerting system, overlapping with the ventral branch of the superior longitudinal fasciculus (SLF III). In this study, we use repetitive transcranial magnetic stimulation (rTMS) and a conscious detection task with near-threshold stimuli that could be preceded by an alerting tone to explore the causal implication of the SMA in the relationship between phasic alertness and conscious perception. Complementary to SMA stimulation, a sham and an active condition (left inferior parietal lobe; IPL) were included. Deterministic tractography was used to isolate the right and left SLF III. Behaviorally, the alerting tone enhanced conscious perception and confidence ratings. rTMS over the SMA reduced the alerting effect on the percentage of perceived stimuli while rTMS over the left IPL produced no modulations, demonstrating a region-specific effect. Additionally, a correlation between the rTMS effect and the integrity of the right SLF III was found. Our results highlight the causal implication of a frontal region, the SMA, in the relationship between phasic alertness and conscious perception, which is related to the white matter microstructure of the SLF III.


Subject(s)
Attention/physiology , Consciousness/physiology , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Adult , Diffusion Tensor Imaging/methods , Female , Humans , Male , Photic Stimulation/methods , Random Allocation , Young Adult
5.
Cereb Cortex ; 29(11): 4539-4550, 2019 12 17.
Article in English | MEDLINE | ID: mdl-30590403

ABSTRACT

The executive control network is involved in the voluntary control of novel and complex situations. Solving conflict situations or detecting errors have demonstrated to impair conscious perception of near-threshold stimuli. The aim of this study was to explore the neural mechanisms underlying executive control and its interaction with conscious perception using functional magnetic resonance imaging and diffusion-weighted imaging. To this end, we used a dual-task paradigm involving Stroop and conscious detection tasks with near-threshold stimuli. A set of prefrontal and frontoparietal regions were more strongly engaged for incongruent than congruent trials while a distributed set of frontoparietal regions showed stronger activation for consciously than nonconsciously perceived trials. Functional connectivity analysis revealed an interaction between executive control and conscious perception in frontal and parietal nodes. The microstructural properties of the middle branch of the superior longitudinal fasciculus were associated with neural measures of the interaction between executive control and consciousness. These results demonstrate that conscious perception and executive control share neural resources in frontoparietal networks, as proposed by some influential models.


Subject(s)
Attention/physiology , Consciousness/physiology , Executive Function/physiology , Frontal Lobe/physiology , Parietal Lobe/physiology , Adult , Brain Mapping , Diffusion Magnetic Resonance Imaging , Female , Frontal Lobe/anatomy & histology , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Parietal Lobe/anatomy & histology , Photic Stimulation , Stroop Test , Visual Perception/physiology , Young Adult
6.
Sci Rep ; 6: 33365, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27624896

ABSTRACT

Flavour aversion learning (FAL) and conditioned flavour preference (CFP) facilitate animal survival and play a major role in food selection, but the neurobiological mechanisms involved are not completely understood. Neuroanatomical bases of CFP were examined by using Fos immunohistochemistry to record neuronal activity. Rats were trained over eight alternating one-bottle sessions to acquire a CFP induced by pairing a flavour with saccharin (grape was CS+ in Group 1; cherry in Group 2; in Group 3, grape/cherry in half of animals; Group 4, grape/cherry in water). Animals were offered the grape flavour on the day immediately after the training and their brains were processed for c-Fos. Neurons evidencing Fos-like immunoreactivity were counted in the infralimbic cortex, nucleus accumbens core, and anterior piriform cortex (aPC). Analysis showed a significantly larger number of activated cells after learning in the aPC alone, suggesting that the learning process might have produced a change in this cortical region. Ibotenic lesions in the aPC blocked flavour-taste preference but did not interrupt flavour-toxin FAL by LiCl. These data suggest that aPC cells may be involved in the formation of flavour preferences and that the integrity of this region may be specifically necessary for the acquisition of a CFP.


Subject(s)
Choice Behavior , Conditioning, Psychological , Piriform Cortex/physiology , Taste/physiology , Animals , Avoidance Learning/drug effects , Body Weight/drug effects , Choice Behavior/drug effects , Lithium Chloride/pharmacology , Male , Piriform Cortex/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...