Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
PLoS One ; 16(10): e0257995, 2021.
Article in English | MEDLINE | ID: mdl-34714848

ABSTRACT

When pharmaceutical interventions are unavailable to deal with an epidemic outbreak, adequate management of communication strategies can be key to reduce the contagion risks. On the one hand, accessibility to trustworthy and timely information, whilst on the other, the adoption of preventive behaviors may be both crucial. However, despite the abundance of communication strategies, their effectiveness has been scarcely evaluated or merely circumscribed to the scrutiny of public affairs. To study the influence of communication strategies on the spreading dynamics of an infectious disease, we implemented a susceptible-exposed-infected-removed-dead (SEIRD) epidemiological model, using an agent-based approach. Agents in our systems can obtain information modulating their behavior from two sources: (i) through the local interaction with other neighboring agents and, (ii) from a central entity delivering information with a certain periodicity. In doing so, we highlight how global information delivered from a central entity can reduce the impact of an infectious disease and how informing even a small fraction of the population has a remarkable impact, when compared to not informing the population at all. Moreover, having a scheme of delivering daily messages makes a stark difference on the reduction of cases, compared to the other evaluated strategies, denoting that daily delivery of information produces the largest decrease in the number of cases. Furthermore, when the information spreading relies only on local interactions between agents, and no central entity takes actions along the dynamics, then the epidemic spreading is virtually independent of the initial amount of informed agents. On top of that, we found that local communication plays an important role in an intermediate regime where information coming from a central entity is scarce. As a whole, our results highlight the importance of proper communication strategies, both accurate and daily, to tackle epidemic outbreaks.


Subject(s)
Communication , Ebolavirus , Epidemics/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Models, Statistical , Quarantine/methods , Africa, Western/epidemiology , COVID-19/prevention & control , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Humans , Social Behavior
2.
Article in English | MEDLINE | ID: mdl-23848755

ABSTRACT

We explore the fundamental question of the critical nonlinearity value needed to dynamically localize energy in discrete nonlinear cubic (Kerr) lattices. We focus on the effective frequency and participation ratio of the profile to determine the transition into localization in one-, two-, and three-dimensional lattices. A simple and general criterion is developed, for the case of an initially localized excitation, to define the transition region in parameter space ("dynamical tongue") from a delocalized to a localized profile. We introduce a method for computing the dynamically excited frequencies, which helps us validate our stationary ansatz approach and the effective frequency concept. A general analytical estimate of the critical nonlinearity is obtained, with an extra parameter to be determined. We find this parameter to be almost constant for two-dimensional systems and prove its validity by applying it successfully to two-dimensional binary lattices.

3.
Opt Express ; 21(1): 927-34, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23388986

ABSTRACT

We show, numerically and experimentally, that the presence of weak disorder results in an enhanced energy distribution of an initially localized wave-packet, in one- and two-dimensional finite lattices. The addition of a focusing nonlinearity facilitates the spreading effect even further by increasing the wave-packet effective size. We find a clear transition between the regions of enhanced spreading (weak disorder) and localization (strong disorder).

SELECTION OF CITATIONS
SEARCH DETAIL