Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Chem ; 90: 103059, 2019 09.
Article in English | MEDLINE | ID: mdl-31226470

ABSTRACT

In this work we describe not previously explored binding studies on the reversible interaction of benzoxaborole with ligands of medical and pharmaceutical interest such as nucleosidic drugs gemcitabine and capecitabine, as well as the hydrophobic chemotherapeutic doxorubicin. We include functional derivatives of benzoxaborole such as a near infrared fluorescent boronolectine, Cy-Bx, The dynamic covalent interaction in physiological conditions was assessed by spectroscopic techniques yielding moderate to high binding affinities. The cytotoxic activity of the drugs upon conjugation to the boronolectins was evaluated revealing significant influence of the bioconjugation status on the cellular viability. The availability of the conjugate for cellular uptake and localization in the model cancer cell line HeLa was assessed by fluorescence imaging. Benzoxaborole and the fluorescent boronolectin Cy-Bx, proved to be versatile conjugation tools for 1,2 and 1,3-diol containing pharmacophores as well as bioisosteric forms such as 1,2-hydroxyamino, envisioning these small boronolectins as components in systems for drug release with tracking capability.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/chemistry , Boron Compounds/pharmacology , Doxorubicin/pharmacology , Nucleosides/chemistry , Nucleosides/metabolism , Antibiotics, Antineoplastic/pharmacology , Antineoplastic Agents/chemistry , Boron Compounds/chemistry , Cell Proliferation , Doxorubicin/chemistry , Drug Liberation , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Monosaccharides/chemistry
2.
Arch Biochem Biophys ; 651: 1-12, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29702063

ABSTRACT

α-synuclein is involved in both familial and sporadic Parkinson's disease. Although its interaction with mitochondria has been well documented, several aspects remains unknown or under debate such as the specific sub-mitochondrial localization or the dynamics of the interaction. It has been suggested that α-synuclein could only interact with ER-associated mitochondria. The vast use of model systems and experimental conditions makes difficult to compare results and extract definitive conclusions. Here we tackle this by analyzing, in a simplified system, the interaction between purified α-synuclein and isolated rat brain mitochondria. This work shows that wild type α-synuclein interacts with isolated mitochondria and translocates into the mitochondrial matrix. This interaction and the irreversibility of α-synuclein translocation depend on incubation time and α-synuclein concentration. FRET experiments show that α-synuclein localizes close to components of the TOM complex suggesting a passive transport of α-synuclein through the outer membrane. In addition, α-synuclein binding alters mitochondrial function at the level of Complex I leading to a decrease in ATP synthesis and an increase of ROS production.


Subject(s)
Electron Transport Complex I/metabolism , Mitochondria/metabolism , alpha-Synuclein/metabolism , Adenosine Triphosphate/metabolism , Animals , Humans , Male , Membrane Potential, Mitochondrial , Parkinson Disease/metabolism , Protein Transport , Rats, Wistar , Reactive Oxygen Species/metabolism
3.
Polymers (Basel) ; 10(2)2018 Feb 05.
Article in English | MEDLINE | ID: mdl-30966185

ABSTRACT

Isolated 7S and 11S globulins obtained from defeated soy flour were complexated with folic acid (FA) in order to generate nano-carriers for this important vitamin in human nutrition. Fluorescence spectroscopy and dynamic light scattering were applied to follow the nano-complexes formation and for their characterization. Fluorescence experimental data were modeled by the Stern-Volmer and a modified double logarithm approach. The results obtained confirmed static quenching. The number of binding sites on the protein molecule was ~1. The values obtained for the binding constants suggest a high affinity between proteins and FA. Particle size distribution allowed to study the protein aggregation phenomenon induced by FA bound to the native proteins. Z-average manifested a clear trend to protein aggregation. 11S-FA nano-complexes resulted in more polydispersity. ζ-potential of FA nano-complexes did not show a remarkable change after FA complexation. The biological activity of nano-complexes loaded with FA was explored in terms of their capacity to enhance the biomass formation of Lactobacillus casei BL23. The results concerning to nano-complexes inclusion in culture media showed higher bacterial growth. Such a result was attributed to the entry of the acid by the specific receptors concomitantly by the peptide receptors. These findings have technological impact for the use of globulins-FA based nano-complexes in nutraceutical, pharmaceutical and food industries.

4.
Front Microbiol ; 8: 1783, 2017.
Article in English | MEDLINE | ID: mdl-28979244

ABSTRACT

Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism for intercellular communication. We report the isolation and characterization of MVs from the probiotic strain Lactobacillus casei BL23. MVs were characterized using analytical high performance techniques, DLS, AFM and TEM. Similar to what has been described for other Gram-positive bacteria, MVs were on the nanometric size range (30-50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins. Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively present in the MVs. The MVs content included cell envelope associated and secretory proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural components of the ribosome, membrane transporters, cell wall-associated hydrolases and phage related proteins. In particular, we identified proteins described as mediators of Lactobacillus' probiotic effects such as p40, p75 and the product of LCABL_31160, annotated as an adhesion protein. The presence of these proteins suggests a role for the MVs in the bacteria-gastrointestinal cells interface. The expression and further encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria could represent a scientific novelty, with applications in food, nutraceuticals and clinical therapies.

SELECTION OF CITATIONS
SEARCH DETAIL