Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4778, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553322

ABSTRACT

Non-Newtonian liquids are characterized by stress and velocity-dependent dynamical response. In elasticity, and in particular, in the field of phononics, reciprocity in the equations acts against obtaining a directional response for passive media. Active stimuli-responsive materials have been conceived to overcome it. Significantly, Milton and Willis have shown theoretically in 2007 that quasi-rigid bodies containing masses at resonance can display a very rich dynamical behavior, hence opening a route toward the design of non-reciprocal and non-Newtonian metamaterials. In this paper, we design a solid structure that displays unidirectional shock resistance, thus going beyond Newton's second law in analogy to non-Newtonian fluids. We design the mechanical metamaterial with finite element analysis and fabricate it using three-dimensional printing at the centimetric scale (with fused deposition modeling) and at the micrometric scale (with two-photon lithography). The non-Newtonian elastic response is measured via dynamical velocity-dependent experiments. Reversing the direction of the impact, we further highlight the intrinsic non-reciprocal response.

2.
Adv Mater ; 34(14): e2110115, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35170092

ABSTRACT

Shape morphing and the possibility of having control over mechanical properties via designed deformations have attracted a lot of attention in the materials community and led to a variety of applications with an emphasis on the space industry. However, current materials normally do not allow to have a full control over the deformation pattern and often fail to replicate such behavior at low scales which is essential in flexible electronics. Thus, in this paper, novel 2D and 3D microscopic hierarchical mechanical metamaterials using mutually-competing substructures within the system that are capable of exhibiting a broad range of the highly unusual auxetic behavior are proposed. Using experiments (3D microprinted polymers) supported by computer simulations, it is shown that such ability can be controlled through geometric design parameters. Finally it is demonstrated that the considered structure can form a composite capable of shape morphing allowing it to deform to a predefined shape.

SELECTION OF CITATIONS
SEARCH DETAIL
...