Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(5)2023 05 12.
Article in English | MEDLINE | ID: mdl-37238694

ABSTRACT

Decreased circulating branched chain amino acids (BCAA) represent a prominent change in amino acid profiles in patients with end-stage liver disease (ESLD). These alterations are considered to contribute to sarcopenia and hepatic encephalopathy and may relate to poor prognosis. Here, we cross-sectionally analyzed the association between plasma BCAA levels and the severity of ESLD and muscle function in participants of the liver transplant subgroup of TransplantLines, enrolled between January 2017 and January 2020. Plasma BCAA levels were measured by nuclear magnetic resonance spectroscopy. Physical performance was analyzed with a hand grip strength test, 4 m walking test, sit-to-stand test, timed up and go test, standing balance test and clinical frailty scale. We included 92 patients (65% men). The Child Pugh Turcotte classification was significantly higher in the lowest sex-stratified BCAA tertile compared to the highest tertile (p = 0.015). The times for the sit-to-stand (r = -0.352, p < 0.05) and timed up and go tests (r = -0.472, p < 0.01) were inversely correlated with total BCAA levels. In conclusion, lower circulating BCAA are associated with the severity of liver disease and impaired muscle function. This suggests that BCAA may represent a useful prognostic marker in the staging of liver disease severity.


Subject(s)
End Stage Liver Disease , Liver Diseases , Male , Humans , Female , Amino Acids, Branched-Chain , Hand Strength , Postural Balance , Time and Motion Studies , Physical Functional Performance
2.
Cells ; 11(3)2022 01 20.
Article in English | MEDLINE | ID: mdl-35159157

ABSTRACT

Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Animals , Mast Cells/metabolism , Myeloproliferative Disorders/metabolism , Neoplasms/metabolism , Signal Transduction , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...