Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 38(12): 3527-3532, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31506030

ABSTRACT

NPC1 is a 25-exon gene located on the long arm of chromosome 18q11.2 and encodes NPC1, a transmembrane protein comprising 1278 amino acid residues. Mutations in the NPC1 gene can cause Niemann-Pick disease type C (NP-C), a rare autosomal-recessive neurovisceral disease. We assessed mutant protein folding using computer-based molecular dynamics (MD) simulations and molecular docking of the three most common NPC1 mutations, all of which result in changes in a cysteine-rich luminal loop region of the protein: a) I1061T is the most commonly detected variant in patients with NP-C worldwide; b) P1007A is the second most common variant, frequently detected in Portuguese, British and German patients; c) G992W occurs most often in patients of Acadian descent. Analyses of molecular structural information and related cellular physiological processes revealed that mutant NPC1 proteins exhibited altered function despite being far from the N-terminal domain cholesterol binding. MD simulations revealed that mutant I1061T protein shows remarkable instability in comparison the WT and also de other mutants, and interestingly this mutant has been identified as the most common variant. In the case of the mutant P1007A, it is presumed that this substitution promotes larger structural changes than proline due to their greater hydrophobic properties.Structural changes related to the G992W mutation may affect the physicochemical space of G992W variant protein because tryptophan induces hydrophobic interactions. Cholesterol docking studies focused on binding recognition showed differences in the binding positions of variants versus the wild-type protein that go some way to explaining the molecular pathogenesis.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Niemann-Pick C1 Protein , Carrier Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins/metabolism , Molecular Docking Simulation
2.
Anticancer Agents Med Chem ; 18(11): 1508-1520, 2018.
Article in English | MEDLINE | ID: mdl-29189179

ABSTRACT

Estrogen (17ß-estradiol) is essential for normal growth and differentiation in the mammary gland. In the last three decades, previous investigations have revealed that Estrogen Receptor Alpha (ERα) plays a critical role in breast cancer. More recently, observations regarding the widespread expression of ERß-like proteins in normal and neoplastic mammary tissues have suggested that ERß is also involved in the mentioned pathology. Design of new drugs both steroidal and nonsteroidal that target any of these receptors represents a promise to treat breast cancer although it remains a challenge due to the sequence similarity between their catalytic domains. In this work, we propose a new set of compounds that could effectively target the estrogen receptors ERα and ERß. These ligands were designed based on the chemical structure of the ERß-selective agonist Diarylpropionitrile (DPN). The designed ligands were submitted to in silico ADMET studies, yielding in a filtered list of ligands that showed better drug-like properties. Molecular dynamics simulations of both estrogen receptors and docking analysis were carried-out employing the designed compounds, from which two were chosen due to their promising characteristics retrieved from theoretical results (docking analysis or targeting receptor predictions). They were chemically synthetized and during the process, two precursor ligands were also obtained. These four ligands were subjected to biological studies from which it could be detected that compound mol60b dislplayed inhibitory activity and its ability to activate the transcription via an estrogenic mechanism of action was also determined. Interestinly, this observation can be related to theoretical binding free energy calculations, where the complex: ERß-mol60b showed the highest energy ΔGbind value in comparison to others.


Subject(s)
Antineoplastic Agents/pharmacology , Nitriles/pharmacology , Propionates/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , MCF-7 Cells , Models, Molecular , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Propionates/chemical synthesis , Propionates/chemistry , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Structure-Activity Relationship
3.
Anticancer Agents Med Chem ; 17(10): 1441-1454, 2017.
Article in English | MEDLINE | ID: mdl-28044941

ABSTRACT

BACKGROUND: The epigenetic regulation of genes in cancer could be targeted by inhibiting Histone deacetylase 6 (HDAC6), an enzyme involved in several types of cancer such as lymphoma, leukemia, ovarian cancer, etc. OBJECTIVE: Through in silico methods, a set of Phenyl butyric acid derivatives with possible HDAC6 inhibitory activity were designed, rendering monophenylamides and biphenylamides using tubacin (HDAC6 selective inhibitor) as reference. METHOD: The target compounds were submitted to theoretical ADMET analyses and their binding properties on different HDAC6 conformers were evaluated through docking calculations. RESULTS: These in silico studies allowed us to identify a compound named B-R2B. In order to have more information about the B-R2B binding recognition properties on HDAC6, the B-R2B-HDAC6 complex was submitted through 100 ns-long Molecular Dynamics (MD) simulation coupled to MMGBSA approach, revealing that B-R2B is located at the entrance of HDAC6 active pocket, blocking the passage of the substrate without reaching the HDAC6 binding site. Based on these results, B-R2B was synthesized, characterized and biologically tested. The HDAC6 fluorometric drug discovery kit Fluor-de-Lys (ENZO Life Sciences Inc.) was used to determine the HDAC6 human inhibitory activity (IC50 value) of B-R2B compound. In addition, B-R2B show IC50 values on cancer cell lines (HeLa; IC50 = 72.6 µM), acute myeloid leukemia (THP-1; IC50 = 16.5 µM), human mast leukemia (HMC; IC50 = 79.29 µM) and chronic myelogenous leukemia (Kasumi; IC50 = 101 µM). CONCLUSION: These results show that B-R2B is a HDAC6 inhibitor, specifically a non-competitive type in a similar way that tubacin does, according to MD simulations.


Subject(s)
Anilides/pharmacology , Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Leukemia/drug therapy , Phenylbutyrates/pharmacology , Uterine Cervical Neoplasms/drug therapy , Anilides/chemical synthesis , Anilides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Leukemia/pathology , Molecular Dynamics Simulation , Molecular Structure , Phenylbutyrates/chemical synthesis , Phenylbutyrates/chemistry , Structure-Activity Relationship , Uterine Cervical Neoplasms/pathology
4.
J Biomol Struct Dyn ; 33(10): 2161-72, 2015.
Article in English | MEDLINE | ID: mdl-25587872

ABSTRACT

The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30's molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π-π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations.


Subject(s)
Benzodioxoles/chemistry , Estradiol/analogs & derivatives , Estradiol/chemistry , Quinolines/chemistry , Receptors, Estrogen/chemistry , Receptors, G-Protein-Coupled/chemistry , Tamoxifen/chemistry , Amino Acid Motifs , Binding Sites , Fulvestrant , Humans , Hydrogen Bonding , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Estrogen/antagonists & inhibitors , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...