Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36297863

ABSTRACT

Sustainable and green sensors based on polydimethyl siloxane (PDMS) or cellulose polymers, as a case of study of the use of portable instrumentation joined to a smartphone, have been tested. A smartphone camera was used to obtain images and was also coupled to a minispectrometer, without and with an optical fiber probe to register spectra. To study light influence on the analytical signal, light-emitting diode (LED), halogen light and daylight have been assayed. A corrective palette of 24 colors and a set with 45 colors from different color ranges were used as the validation set. The results indicated that halogen light was the best option to obtain the spectra. However, for digital image analysis, it was the LED light that gave a greater approximation of the RGB values of the real colors. Based on these results, the spectra and the RGB components of PDMS solid sensors doped with 1,2-naphtoquinone-4-sulfonate (NQS) for the determination of ammonium in water or urea in urine, PDMS doped with Griess reagent for developing the assay of nitrite in waters and cellulose sensors for the determination of hydrogen sulfide in the atmospheres have been obtained. The results achieved were good in terms of sensitivity and linearity and were comparable to those obtained using a laboratory benchtop instrument. Several rules for selecting the most suitable light source to obtain the spectra and/or images have been established and an image correction method has been introduced.

2.
J Chromatogr A ; 1661: 462694, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34879310

ABSTRACT

An in place colorimetric method has been proposed for estimation of the quantity of lactose in several matrix (milk, water effluents and surfaces). Analyzing the amount of this carbohydrate it can be control the product, the cleanliness of the parts of the dairy companies and it can avoid contamination of milk products produced there. This method combines the use of HPTLC for sugars separation with novel analytical devices as minispectrophotometer with fiber optic coupled to a smartphone. In order to measure the lactose a colorimetric reaction has been used. Variable volumes of samples or stock solutions were deposited in nano-silica gel layer, a mobile phase of acetonitrile:water:acetic acid was used for carbohydrate separation and a solution of thymol (0.05 g Thymol in 95 mL of EtOH and 5 mL H2SO4) was used for revealed the carbohydrate spot. Finally, the reflectance of samples and stock solutions were measured. The achieved limits of detection were 0.03 mg mL-1 and 0.003 mg mL-1 for the working concentration range and the analysis at traces level respectively.


Subject(s)
Lactose , Smartphone , Animals , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Milk
3.
Biosensors (Basel) ; 11(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201174

ABSTRACT

The development of in situ analytical devices has gained outstanding scientific interest. A solid sensing membrane composed of 1,2-naphthoquinone-4-sulfonate (NQS) derivatizing reagent embedded into a polymeric polydimethylsiloxane (PDMS) composite was proposed for in situ ammonium (NH4+) and urea (NH2CONH2) analysis in water and urine samples, respectively. Satisfactory strategies were also applied for urease-catalyzed hydrolysis of urea, either in solution or glass-supported urease immobilization. Using diffuse reflectance measurements combined with digital image processing of color intensity (RGB coordinates), qualitative and quantitative analyte detection was assessed after the colorimetric reaction took place inside the sensing membrane. A suitable linear relationship was found between the sensor response and analyte concentration, and the results were validated by a thymol-PDMS-based sensor based on the Berthelot reaction. The suggested sensing device offers advantages such as rapidity, versatility, portability, and employment of non-toxic reagents that facilitate in situ analysis in an energy-efficient manner.


Subject(s)
Naphthoquinones/chemistry , Urea/metabolism , Urease/metabolism , Colorimetry , Dimethylpolysiloxanes , Polymers , Urease/analysis , Water/chemistry
4.
Anal Chem ; 93(15): 6043-6052, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33819024

ABSTRACT

The analytical information given by different types of instruments was scaled in order to establish suitably the figures of merit of a given methodology based on color measurements. Different lab and portable instruments, including smartphones with and without a miniaturized spectrophotometer accessory, have been tested. In order to obtain broad information and using objective criteria, these instruments have been compared from (1) the analytical point of view, considering mainly the detection limit (limits of detection [LODs]), selectivity, accuracy and intra- and interday precision, size, components, and costs; and (2) the environmental point of view, based on their footprint as kilograms of CO2. No significant differences in the precision were obtained with RSD (%) values lower than 10% for all of the instruments, but the achieved values of LOD, selectivity, accuracy, and cost were different. Footprints of CO2 were better for portable instrumentation, especially for smartphones. Three solid chemosensors made of different materials (PDMS, paper, or nylon) have been tested for the determination of ammonia and hydrogen sulfide at different concentration levels (ppb levels). As a result of this study, some rules for selecting the instrument for obtaining the required information have been established. Two apps have been developed for quantitation by smartphones, one for working with RGB values and the other for spectra obtained by the miniaturized spectrophotometer coupled to a smartphone.

SELECTION OF CITATIONS
SEARCH DETAIL
...