Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; : e202400272, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805153

ABSTRACT

Chemical reactions in the gas phase of the interstellar medium face significant challenges due to its extreme conditions (i.e., low gas densities and temperatures), necessitating the presence of dust grains to facilitate the synthesis of molecules inaccessible in the gas phase. While interstellar grains are known to enhance encounter rates and dissipate energy from exothermic reactions, their potential as chemical catalysts remain less explored. Here, we present mechanistic insights into the Fischer-Tropsch-type methanol (FTT-CH3OH) synthesis by reactivity of CO with H2 and using cosmic FeS surfaces as heterogeneous catalysts. Periodic quantum chemical calculations were employed to characterize the potential energy surface of the reactions on the (011) and (001) FeS surfaces, considering different Fe coordination environments and S vacancies. Kinetic calculations were also conducted to assess catalytic capacity and allocate reaction processes within the astrochemical framework. Findings demonstrate the feasibility of FeS-based astrocatalysis in the FTT-CH3OH synthesis. The reactions and their energetics were elucidated from a mechanistic standpoint. Kinetic analysis demonstrates the temperature dependency of the simulated processes, underscoring the compulsory need of energy sources considering the astrophysical scenario. Our results provide insights into the presence of CH3OH in diverse regions where current models struggle to explain its observational quantity.

2.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069147

ABSTRACT

Several organic chemical compounds (the so-called interstellar complex organic molecules, iCOMs) have been identified in the interstellar medium (ISM). Examples of iCOMs are formamide (HCONH2), acetaldehyde (CH3CHO), methyl formate (CH3OCHO), or formic acid (HCOOH). iCOMs can serve as precursors of other organic molecules of enhanced complexity, and hence they are key species in chemical evolution in the ISM. The formation of iCOMs is still a subject of a vivid debate, in which gas-phase or grain-surface syntheses have been postulated. In this study, we investigate the grain-surface-formation pathways for the four above-mentioned iCOMs by transferring their primary gas-phase synthetic routes onto water ice surfaces. Our objective is twofold: (i) to identify potential grain-surface-reaction mechanisms leading to the formation of these iCOMs, and (ii) to decipher either parallelisms or disparities between the gas-phase and the grain-surface reactions. Results obtained indicate that the presence of the icy surface modifies the energetic features of the reactions compared to the gas-phase scenario, by increasing some of the energy barriers. Therefore, the investigated gas-phase mechanisms seem unlikely to occur on the icy grains, highlighting the distinctiveness between the gas-phase and the grain-surface chemistry.


Subject(s)
Ice , Organic Chemicals , Organic Chemicals/chemistry , Evolution, Chemical
3.
ACS Earth Space Chem ; 6(3): 496-511, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35330630

ABSTRACT

Ethanol (CH3CH2OH) is a relatively common molecule, often found in star-forming regions. Recent studies suggest that it could be a parent molecule of several so-called interstellar complex organic molecules (iCOMs). However, the formation route of this species remains under debate. In the present work, we study the formation of ethanol through the reaction of CCH with one H2O molecule belonging to the ice as a test case to investigate the viability of chemical reactions based on a "radical + ice component" scheme as an alternative mechanism for the synthesis of iCOMs, beyond the usual radical-radical coupling. This has been done by means of DFT calculations adopting two clusters of 18 and 33 water molecules as ice models. Results indicate that CH3CH2OH can potentially be formed by this proposed reaction mechanism. The reaction of CCH with H2O on the water ice clusters can be barrierless (because of the help of boundary icy water molecules acting as proton-transfer assistants), leading to the formation of vinyl alcohol precursors (H2CCOH and CHCHOH). Subsequent hydrogenation of vinyl alcohol yielding ethanol is the only step presenting a low activation energy barrier. We finally discuss the astrophysical implications of these findings.

4.
Life (Basel) ; 9(3)2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527465

ABSTRACT

Condensation reactions between biomolecular building blocks are the main synthetic channels to build biopolymers. However, under highly diluted prebiotic conditions, condensations are thermodynamically hampered since they release water. Moreover, these reactions are also kinetically hindered as, in the absence of any catalyst, they present high activation energies. In living organisms, in the formation of peptides by condensation of amino acids, this issue is overcome by the participation of adenosine triphosphate (ATP), in which, previous to the condensation, phosphorylation of one of the reactants is carried out to convert it as an activated intermediate. In this work, we present for the first time results based on density functional theory (DFT) calculations on the peptide bond formation between two glycine (Gly) molecules adopting this phosphorylation-based mechanism considering a prebiotic context. Here, ATP has been modeled by a triphosphate (TP) component, and different scenarios have been considered: (i) gas-phase conditions, (ii) in the presence of a Mg2+ ion available within the layer of clays, and (iii) in the presence of a Mg2+ ion in watery environments. For all of them, the free energy profiles have been fully characterized. Energetics derived from the quantum chemical calculations indicate that none of the processes seem to be feasible in the prebiotic context. In scenarios (i) and (ii), the reactions are inhibited due to unfavorable thermodynamics associated with the formation of high energy intermediates, while in scenario (iii), the reaction is inhibited due to the high free energy barrier associated with the condensation reactions. As a final consideration, the role of clays in this TP-mediated peptide bond formation route is advocated, since the interaction of the phosphorylated intermediate with the internal clay surfaces could well favor the reaction free energies.

SELECTION OF CITATIONS
SEARCH DETAIL
...