Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Microsc Res Tech ; 87(2): 373-386, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37855309

ABSTRACT

Since gastrointestinal disorders are early consequences of Parkinson's disease (PD), this disease is clearly not restricted to the central nervous system (CNS), but also significantly affects the enteric nervous system (ENS). Large aggregates of the protein α-synuclein forming Lewy bodies, the prototypical cytopathological marker of this disease, have been observed in enteric nervous plexuses. However, their value in early prognosis is controversial. The Golgi complex (GC) of nigral neurons appears fragmented in Parkinson's disease, a characteristic common in most neurodegenerative diseases. In addition, the distribution and levels of regulatory proteins such as Rabs and SNAREs are altered, suggesting that PD is a membrane traffic-related pathology. Whether the GC of enteric dopaminergic neurons is affected by the disease has not yet been analyzed. In the present study, dopaminergic neurons in colon nervous plexuses behave as nigral neurons in a hemiparkinsonian rat model based on the injection of the toxin 6-OHDA. Their GCs are fragmented, and some regulatory proteins' distribution and expression levels are altered. The putative mechanisms of the transmission of the neurotoxin to the ENS are discussed. Our results support the possibility that GC structure and the level of some proteins, especially syntaxin 5, could be helpful as early indicators of the disease. RESEARCH HIGHLIGHTS: The Golgi complexes of enteric dopaminergic neurons appear fragmented in a Parkinson's disease rat model. Our results support the hypothesis that the Golgi complex structure and levels of Rab1 and syntaxin 5 could be helpful as early indicators of the disease.


Subject(s)
Enteric Nervous System , Parkinson Disease , Rats , Animals , Parkinson Disease/metabolism , Parkinson Disease/pathology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Golgi Apparatus/pathology , Qa-SNARE Proteins/metabolism
3.
Nat Commun ; 14(1): 6159, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816713

ABSTRACT

Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.


Subject(s)
Hippocampus , Neurons , Hippocampus/physiology , Neurons/metabolism , Entorhinal Cortex/physiology , Theta Rhythm/physiology , Parvalbumins/metabolism , Action Potentials/physiology , CA1 Region, Hippocampal/physiology
4.
iScience ; 26(1): 105814, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36636356

ABSTRACT

Basal forebrain cholinergic neurons (BFCNs) play an important role in associative learning, suggesting that BFCNs may participate in processing stimuli that predict future outcomes. However, the impact of outcome probabilities on BFCN activity remained elusive. Therefore, we performed bulk calcium imaging and recorded spiking of identified cholinergic neurons from the basal forebrain of mice performing a probabilistic Pavlovian cued outcome task. BFCNs responded more to sensory cues that were often paired with reward. Reward delivery also activated BFCNs, with surprising rewards eliciting a stronger response, whereas punishments evoked uniform positive-going responses. We propose that BFCNs differentially weigh predictions of positive and negative reinforcement, reflecting divergent relative salience of forecasting appetitive and aversive outcomes, partially explained by a simple reinforcement learning model of a valence-weighed unsigned prediction error. Finally, the extent of cue-driven cholinergic activation predicted subsequent decision speed, suggesting that the expectation-gated cholinergic firing is instructive to reward-seeking behaviors.

5.
Front Neuroanat ; 16: 988015, 2022.
Article in English | MEDLINE | ID: mdl-36120099

ABSTRACT

Rodents detect chemical information mainly through the olfactory and vomeronasal systems, which play complementary roles to orchestrate appropriate behavioral responses. To characterize the integration of chemosensory information, we have performed electrophysiological and c-Fos studies of the bulbo-amygdalar network in freely behaving female mice exploring neutral or conspecific stimuli. We hypothesize that processing conspecifics stimuli requires both chemosensory systems, and thus our results will show shared patterns of activity in olfactory and vomeronasal structures. Were the hypothesis not true, the activity of the vomeronasal structures would be independent of that of the main olfactory system. In the c-Fos analysis, we assessed the activation elicited by neutral olfactory or male stimuli in a broader network. Male urine induced a significantly higher activity in the vomeronasal system compared to that induced by a neutral odorant. Concerning the olfactory system, only the cortex-amygdala transition area showed significant activation. No differential c-Fos expression was found in the reward system and the basolateral amygdala. These functional patterns in the chemosensory circuitry reveal a strong top-down control of the amygdala over both olfactory bulbs, suggesting an active role of the amygdala in the integration of chemosensory information directing the activity of the bulbs during environmental exploration.

6.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142737

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Approximately 50% of AD patients show anxiety and depressive symptoms, which may contribute to cognitive decline. We aimed to investigate whether the triple-transgenic mouse (3xTg-AD) is a good preclinical model of this co-morbidity. The characteristic histological hallmarks are known to appear around 6-month; thus, 4- and 8-month-old male mice were compared with age-matched controls. A behavioral test battery was used to examine anxiety- (open field (OF), elevated plus maze, light-dark box, novelty suppressed feeding, and social interaction (SI) tests), and depression-like symptoms (forced swim test, tail suspension test, sucrose preference test, splash test, and learned helplessness) as well as the cognitive decline (Morris water maze (MWM) and social discrimination (SD) tests). Acetylcholinesterase histochemistry visualized cholinergic fibers in the cortex. Dexamethasone-test evaluated the glucocorticoid non-suppression. In the MWM, the 3xTg-AD mice found the platform later than controls in the 8-month-old cohort. The SD abilities of the 3xTg-AD mice were missing at both ages. In OF, both age groups of 3xTg-AD mice moved significantly less than the controls. During SI, 8-month-old 3xTg-AD animals spent less time with friendly social behavior than the controls. In the splash test, 3xTg-AD mice groomed themselves significantly less than controls of both ages. Cortical fiber density was lower in 8-month-old 3xTg-AD mice compared to the control. Dexamethasone non-suppression was detectable in the 4-month-old group. All in all, some anxiety- and depressive-like symptoms were present in 3xTg-AD mice. Although this strain was not generally more anxious or depressed, some aspects of comorbidity might be studied in selected tests, which may help to develop new possible treatments.


Subject(s)
Alzheimer Disease , Acetylcholinesterase , Alzheimer Disease/pathology , Animals , Anxiety/pathology , Dexamethasone , Disease Models, Animal , Glucocorticoids , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sucrose , tau Proteins
7.
Cell Rep ; 40(5): 111149, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35926456

ABSTRACT

Episodic learning and memory retrieval are dependent on hippocampal theta oscillation, thought to rely on the GABAergic network of the medial septum (MS). To test how this network achieves theta synchrony, we recorded MS neurons and hippocampal local field potential simultaneously in anesthetized and awake mice and rats. We show that MS pacemakers synchronize their individual rhythmicity frequencies, akin to coupled pendulum clocks as observed by Huygens. We optogenetically identified them as parvalbumin-expressing GABAergic neurons, while MS glutamatergic neurons provide tonic excitation sufficient to induce theta. In accordance, waxing and waning tonic excitation is sufficient to toggle between theta and non-theta states in a network model of single-compartment inhibitory pacemaker neurons. These results provide experimental and theoretical support to a frequency-synchronization mechanism for pacing hippocampal theta, which may serve as an inspirational prototype for synchronization processes in the central nervous system from Nematoda to Arthropoda to Chordate and Vertebrate phyla.


Subject(s)
Hippocampus , Theta Rhythm , Action Potentials/physiology , Animals , GABAergic Neurons/metabolism , Hippocampus/metabolism , Mice , Parvalbumins/metabolism , Rats , Theta Rhythm/physiology
8.
Front Neuroinform ; 14: 21, 2020.
Article in English | MEDLINE | ID: mdl-32508613

ABSTRACT

Single cell electrophysiology remains one of the most widely used approaches of systems neuroscience. Decisions made by the experimenter during electrophysiology recording largely determine recording quality, duration of the project and value of the collected data. Therefore, online feedback aiding these decisions can lower monetary and time investment, and substantially speed up projects as well as allow novel studies otherwise not possible due to prohibitively low throughput. Real-time feedback is especially important in studies that involve optogenetic cell type identification by enabling a systematic search for neurons of interest. However, such tools are scarce and limited to costly commercial systems with high degree of specialization, which hitherto prevented wide-ranging benefits for the community. To address this, we present an open-source tool that enables online feedback during electrophysiology experiments and provides a Python interface for the widely used Open Ephys open source data acquisition system. Specifically, our software allows flexible online visualization of spike alignment to external events, called the online peri-event time histogram (OPETH). These external events, conveyed by digital logic signals, may indicate photostimulation time stamps for in vivo optogenetic cell type identification or the times of behaviorally relevant events during in vivo behavioral neurophysiology experiments. Therefore, OPETH allows real-time identification of genetically defined neuron types or behaviorally responsive populations. By allowing "hunting" for neurons of interest, OPETH significantly reduces experiment time and thus increases the efficiency of experiments that combine in vivo electrophysiology with behavior or optogenetic tagging of neurons.

9.
Nat Neurosci ; 22(11): 1747-1748, 2019 11.
Article in English | MEDLINE | ID: mdl-31636446
10.
J Alzheimers Dis ; 72(3): 957-975, 2019.
Article in English | MEDLINE | ID: mdl-31658055

ABSTRACT

Glutamate excitotoxicity has long been related to Alzheimer's disease (AD) pathophysiology, and it has been shown to affect the major AD-related hallmarks, amyloid-ß peptide (Aß) accumulation and tau phosphorylation (p-tau). We investigated whether oral administration of monosodium glutamate (MSG) has effects in a murine model of AD, the double transgenic mice APP/PS1. We found that AD pathogenic factors appear earlier in APP/PS1 when supplemented with MSG, while wildtype mice were essentially not affected. Aß and p-tau levels were increased in the hippocampus in young APP/PS1 animals upon MSG administration. This was correlated with increased Cdk5-p25 levels. Furthermore, in these mice, we observed a decrease in the AMPA receptor subunit GluA1 and they had impaired long-term potentiation. The Hebb-Williams Maze revealed that they had memory deficits. We show here for the first time that oral MSG supplementation can accelerate AD-like pathophysiology in a mouse model of AD.


Subject(s)
Alzheimer Disease/chemically induced , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor , Presenilin-1 , Sodium Glutamate/administration & dosage , Sodium Glutamate/toxicity , Administration, Oral , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Female , Flavoring Agents/administration & dosage , Flavoring Agents/toxicity , Male , Mice , Mice, Transgenic , Presenilin-1/genetics
11.
J Comp Neurol ; 526(8): 1403-1416, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29473165

ABSTRACT

The stress system coordinates the adaptive reactions of the organism to stressors. Therefore, dysfunctions in this circuit may correlate to anxiety-related disorders, including depression. Comprehending the dynamics of this network may lead to a better understanding of the mechanisms that underlie these diseases. The central nucleus of the amygdala (CeA) activates the hypothalamic-pituitary-adrenal axis and brainstem nodes by triggering endocrine, autonomic and behavioral stress responses. The medial prefrontal cortex plays a significant role in regulating reactions to stressors, and is specifically important for limiting fear responses. Brain oscillations reflect neural systems activity. Synchronous neuronal assemblies facilitate communication and synaptic plasticity, mechanisms that cooperatively support the temporal representation and long-term consolidation of information. The purpose of this article was to delve into the interactions between these structures in stress contexts by evaluating changes in oscillatory activity. We particularly analyzed the local field potential in the infralimbic region of the medial prefrontal cortex (IL) in urethane-anesthetized rats after the electrical activation of the central nucleus of the amygdala by mimicking firing rates induced by acute stress. Electrical CeA activation induced a delayed, but significant, change in the IL, with prominent slow waves accompanied by an increase in the theta and gamma activities, and spindles. The phase-amplitude coupling of both slow waves and theta oscillations significantly increased with faster oscillations, including theta-gamma coupling and the nesting of spindles, theta and gamma oscillations in the slow wave cycle. These results are further discussed in neural processing terms of the stress response and memory formation.


Subject(s)
Afferent Pathways/physiology , Amygdala/physiology , Cerebral Cortex/cytology , Electric Stimulation/methods , Evoked Potentials/physiology , Neurons/physiology , Animals , Female , Rats , Rats, Sprague-Dawley , Time Factors
12.
Sci Rep ; 7(1): 9924, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855563

ABSTRACT

Chemosensory processing in mammals involves the olfactory and vomeronasal systems, but how the activity of both circuits is integrated is unknown. In our study, we recorded the electrophysiological activity in the olfactory bulbs and the vomeronasal amygdala in freely behaving mice exploring a battery of neutral and conspecific stimuli. The exploration of stimuli, including a neutral stimulus, induced synchronic activity in the olfactory bulbs characterized by a dominant theta rhythmicity, with specific theta-gamma coupling, distinguishing between vomeronasal and olfactory structures. The correlated activation of the bulbs suggests a coupling between the stimuli internalization in the nasal cavity and the vomeronasal pumping. In the amygdala, male stimuli are preferentially processed in the medial nucleus, whereas female cues induced a differential response in the posteromedial cortical amygdala. Thus, particular theta-gamma patterns in the olfactory network modulates the integration of chemosensory information in the amygdala, allowing the selection of an appropriate behaviour.


Subject(s)
Amygdala/physiology , Olfactory Bulb/physiology , Vomeronasal Organ/physiology , Animals , Behavior, Animal/physiology , Electric Stimulation , Female , Male , Mice , Sex Factors
13.
J Physiol ; 595(5): 1775-1792, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27880004

ABSTRACT

KEY POINTS: The nucleus incertus is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Synchronisation exists between the nucleus incertus and hippocampal activities during theta periods. By the Granger causality analysis, we demonstrated a directional information flow between theta rhythmical neurons in the nucleus incertus and the hippocampus in theta-on states. The electrical stimulation of the nucleus incertus is also able to evoke a phase reset of the hippocampal theta wave. Our data suggest that the nucleus incertus is a key node of theta generation and the modulation network. ABSTRACT: In recent years, a body of evidence has shown that the nucleus incertus (NI), in the dorsal tegmental pons, is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Ascending reticular brainstem system activation evokes hippocampal theta rhythm with coupled neuronal activity in the NI. In a recent paper, we showed three populations of neurons in the NI with differential firing during hippocampal theta activation. The objective of this work was to better evaluate the causal relationship between the activity of NI neurons and the hippocampus during theta activation in order to further understand the role of the NI in the theta network. A Granger causality analysis was run to determine whether hippocampal theta activity with sensory-evoked theta depends on the neuronal activity of the NI, or vice versa. The analysis showed causal interdependence between the NI and the hippocampus during theta activity, whose directional flow depended on the different neuronal assemblies of the NI. Whereas type I and II NI neurons mainly acted as receptors of hippocampal information, type III neuronal activity was the predominant source of flow between the NI and the hippocampus in theta states. We further determined that the electrical activation of the NI was able to reset hippocampal waves with enhanced theta-band power, depending on the septal area. Collectively, these data suggest that hippocampal theta oscillations after sensory activation show dependence on NI neuron activity, which could play a key role in establishing optimal conditions for memory encoding.


Subject(s)
Hippocampus/physiology , Raphe Nuclei/physiology , Animals , Electric Stimulation , Female , Neurons/physiology , Rats, Sprague-Dawley , Theta Rhythm
14.
Physiol Rep ; 4(14)2016 Jul.
Article in English | MEDLINE | ID: mdl-27449812

ABSTRACT

Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane-anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimulation of 130 Hz of frequency, 60 µA of constant current intensity and biphasic pulse width of 80 µsec. After a period of baseline recording, local field potentials (LFP) were recorded with formvar-insulated stainless steel electrodes. DBS of the IL increased the power of slow wave (SW, <1.5 Hz) and theta (3-12 Hz) frequencies in the hippocampus and BLA Furthermore, IL DBS caused a precise coupling in different frequency bands between both brain structures. The increases in SW band synchronization in hippocampus and BLA after DBS suggest that these changes may be important for the improvement of depressive behavior. In addition, the augmentation in theta synchrony might contribute to improvement in emotional and cognitive processes.


Subject(s)
Amygdala/physiology , Brain Waves , Deep Brain Stimulation , Electroencephalography , Hippocampus/physiology , Prefrontal Cortex/physiology , Animals , Behavior, Animal , Male , Neural Pathways/physiology , Rats, Wistar , Signal Processing, Computer-Assisted , Time Factors
15.
Physiol Behav ; 151: 456-62, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26222614

ABSTRACT

Since the pathogenesis of fibromyalgia is unknown, treatment options are limited, ineffective and in fact based on symptom relief. A recently proposed rat model of fibromyalgia is based on central depletion of monamines caused by reserpine administration. This model showed widespread musculoskeletal pain and depressive-like symptoms, but the methodology used to measure such symptoms has been criticized. Evidence relates the high prevalence of pain and depression in fibromyalgia to common pathogenic pathways, most probably focused on the monoaminergic system. The present study aims at a validation of the reserpine model of fibromyalgia. For this purpose, rats undergoing this model have been tested for depressive-like symptoms with a Novelty-Suppressed Feeding Test adaptation. Animals administered with reserpine and subjected to forced food deprivation performed a smaller number of incursions to the center of the open field, evidenced by a decrease in the per-minute rate of the rats' approaching, smelling or touching the food. They also took more time to eat from the central food than control rats. These NSFT findings suggest the presence of depressive-like disorders in this animal model of fibromyalgia.


Subject(s)
Adrenergic Uptake Inhibitors/toxicity , Depression/etiology , Fibromyalgia/chemically induced , Fibromyalgia/complications , Reserpine/toxicity , Animals , Disease Models, Animal , Exploratory Behavior/drug effects , Feeding Behavior/drug effects , Hindlimb Suspension , Inhibition, Psychological , Male , Motor Activity/drug effects , Pain Threshold/drug effects , Rats , Rats, Sprague-Dawley , Time Factors
17.
Eur J Neurosci ; 41(8): 1049-67, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25817317

ABSTRACT

This paper describes the existence of theta-coupled neuronal activity in the nucleus incertus (NI). Theta rhythm is relevant for cognitive processes such as spatial navigation and memory processing, and can be recorded in a number of structures related to the hippocampal activation including the NI. Strong evidence supports the role of this tegmental nucleus in neural circuits integrating behavioural activation with the hippocampal theta rhythm. Theta oscillations have been recorded in the local field potential of the NI, highly coupled to the hippocampal waves, although no rhythmical activity has been reported in neurons of this nucleus. The present work analyses the neuronal activity in the NI in conditions leading to sustained hippocampal theta in the urethane-anaesthetised rat, in order to test whether such activation elicits a differential firing pattern. Wavelet analysis has been used to better define the neuronal activity already described in the nucleus, i.e., non-rhythmical neurons firing at theta frequency (type I neurons) and fast-firing rhythmical neurons (type II). However, the most remarkable finding was that sustained stimulation activated regular-theta neurons (type III), which were almost silent in baseline conditions and have not previously been reported. Thus, we describe the electrophysiological properties of type III neurons, focusing on their coupling to the hippocampal theta. Their spike rate, regularity and phase locking to the oscillations increased at the beginning of the stimulation, suggesting a role in the activation or reset of the oscillation. Further research is needed to address the specific contribution of these neurons to the entire circuit.


Subject(s)
Action Potentials , Hippocampus/physiology , Neurons/physiology , Raphe Nuclei/physiology , Theta Rhythm , Animals , Female , Membrane Potentials , Rats, Sprague-Dawley , Wavelet Analysis
18.
Neurosci Lett ; 517(2): 71-6, 2012 May 31.
Article in English | MEDLINE | ID: mdl-22521581

ABSTRACT

Recent findings support a relevant role of the nucleus incertus in the control of the hippocampal activity through the modulation of theta rhythm. Previous studies from our group have shown that this nucleus is a critical relay between reticularis pontis oralis and the medial septum/diagonal band, regarded as the main activator and the pacemaker of the hippocampal oscillations, respectively. Besides, the nucleus incertus is highly linked to activated states related to the arousal response. The neurotransmission of the nucleus incertus, however, remains uncertain. Only GABA and the neuromodulator relaxin 3 are usually considered to be involved in its contribution to the septohippocampal system. In this work, we have analyzed the existence of an excitatory projection from the nucleus incertus to the medial septum. We have found a group of glutamatergic neurons in the nucleus incertus projecting to the medial septum. Moreover, we were able to describe a segregated distribution of calbindin and calretinin neurons. While calretinin expression was restricted to the nucleus incertus pars compacta, calbindin positive neurons where observed both in the pars dissipata and the pars compacta of the nucleus. The present work provides innovative data supporting an excitatory component in the pontoseptal pathway.


Subject(s)
Glutamates/physiology , Hippocampus/physiology , Pons/physiology , Septum of Brain/physiology , Animals , Brain Mapping , Calbindin 2 , Calbindins , Data Interpretation, Statistical , Diagonal Band of Broca/physiology , Electroencephalography , Female , Hippocampus/cytology , Image Processing, Computer-Assisted , Immunohistochemistry , Microscopy, Fluorescence , Rats , Rats, Sprague-Dawley , Reticular Formation/physiology , S100 Calcium Binding Protein G/metabolism , Tissue Fixation , Vesicular Glutamate Transport Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...