Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38397561

ABSTRACT

Antibiotic resistance in foodborne pathogens is an increasing threat to global human health. Among the most prevalent antibiotic-resistant bacteria are Salmonella enterica serovar Typhimurium, Campylobacter jejuni and E. coli 0157:H7. Control of these and other pathogens requires innovative approaches, i.e., discovering new molecules that will inactivate them, or render them less virulent without inducing resistance. Recently, several polyphenol molecules have been shown to possess such characteristics. Also, the use of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) approaches has recently been proposed for such purpose. This review summarizes the main findings regarding the application of both approaches to control the above-mentioned foodborne pathogens by relying on Quorum Sensing interference (Quorum Quenching) mechanisms and highlights the avenues needed for further research.

2.
Carbohydr Res ; 490: 107952, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32114014

ABSTRACT

The major anomer of non-protonated neutral d-glucosamine GlcN0 is the ß-form, while the α-anomer is dominant for protonated cationic glucosamine GlcNH+. The present work confirmed correlation between the anomerization and the protonation by simultaneous determination of signal intensity and chemical shift in pD-variation 1H NMR, and formulated the equilibrium constants between subspecies α-GlcN0, ß-GlcN0, α-GlcND+, and ß-GlcND+ to interpret the correlation. The individual anomerization constants, Kan = [ßGlcN]/[αGlcN] and KanD = [ßGlcND+]/[αGlcND+], are linked to each other through the relation KDα∙KanD = KDß∙Kan with the deuteration constants KDα and KDß of the anomers. The anomer populations are stimulated by OD- and D+ ions in the dose-response form. The acidic deuteron in α-GlcND+ is populated mostly at the nitrogen atom, whereas the population in ß-GlcND+ is comparable at nitrogen and anomeric oxygen; this difference is consistent with the basicity of the nitrogen and the anomerization process of glucosamine.


Subject(s)
Glucosamine/chemistry , Carbohydrate Conformation , Hydrogenation , Kinetics , Nitrogen/chemistry , Proton Magnetic Resonance Spectroscopy
3.
Nanomaterials (Basel) ; 8(6)2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29895747

ABSTRACT

The transport of hydrophobic drugs in the human body exhibits complications due to the low solubility of these compounds. With the purpose of enhancing the bioavailability and biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such as phospholipids, for the synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes, constituted by lecithin and coated with a shell of chitosan. The stability of such structures and the efficiency of the encapsulation of capsaicin, as well as the internal and superficial distribution of capsaicin and chitosan inside the nanoliposome, were analyzed. The characterization of the system was carried out through density maps and the potentials of mean force for the lecithin-capsaicin, lecithin-chitosan, and capsaicin-chitosan interactions. The results of these simulations show that chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable during the simulation. The deposition behavior was found to be influenced by a pattern of N-acetylation of chitosan.

4.
Article in English | MEDLINE | ID: mdl-29675051

ABSTRACT

This study shows the seasonal effect on the antioxidant, antiproliferative, and antimicrobial activities of L. glaucescens Kunth (LG) leaves extracts. Their antioxidant activity was evaluated through the DPPH, FRAP, and ORAC assays. Their phenolic content (PC) was determined by means of the Folin-Ciocalteu method, and the main phenolic compounds were identified through a HPLC-DAD analysis. Antiproliferative activity was determined by MTT assay against HeLa, LS 180, M12.C3.F6, and ARPE cell lines. Antimicrobial potential was evaluated against Staphylococcus aureus and Escherichia coli using a microdilution method. All the LG extracts presented high antioxidant activity and PC, with quercitrin and epicatechin being the most abundant. Antioxidant activity and PC were affected by the season; particularly autumn (ALGE) and summer (SULGE) extracts exhibited the highest values (p < 0.05). All extracts presented moderate antiproliferative activity against the cell lines evaluated, HeLa being the most susceptible of them. However, ALGE and SULGE were the most active too. About antimicrobial activity, SULGE (MIC90 < 800 µg/mL; MIC50 < 400 µg/mL), and SLGE (MIC50 < 1000 µg/mL) showed a moderate inhibitory effect against S. aureus. These findings provide new information about the seasonal effect on the PC and biological properties of LG extracts. Clearly, antioxidant activity was the most important with respect to the other two.

5.
Carbohydr Res ; 452: 6-16, 2017 Nov 27.
Article in English | MEDLINE | ID: mdl-28992455

ABSTRACT

Complex formation of D-glucosamine (Gl) and N-acetyl-D-glucosamine (AGl) with capsaicin (Cp) were studied by 1H NMR titrations in H2O-d2 and DMSO-d6; capsaicin is the major bioactive component of chili peppers. Every titration curve has been interpreted by formulating a suitable model for the reaction equilibrium, to elucidate intermolecular interactions. In DMSO, glucosamine cations associate with each other to yield linear aggregates, and undergo pseudo-1:1-complexation with capsaicin, the formation constant being ca. 30 M-1. N-Acetylglucosamine, without self-association, forms a 2:1-complex AGl2Cp with the stability of ca. 70 M-2. These complexations are achieved by intermolecular hydrogen bonds. In D2O, glucosamine undergoes reversible protonation equilibrium between Gl0 and GlH+ with the logarithmic protonation constants log KD = 8.63 for α-glucosamine and 8.20 for ß-isomer. Both anomeric isomers of deprotonated glucosamine form Gl0Cp-type complexes of capsaicin, in a competitive manner, with a formation constant of 1040 M-1 for the α-glucosamine complex and 830 M-1 for the ß-complex; the anomeric carbons result in the difference in thermodynamic stability. The reactant molecules are closed up by the solvent-exclusion effect and/or the van der Waals interaction; the resulting pair is stabilized by intermolecular hydrogen bonding within a local water-free space between the component molecules. By contrast, neither protonated glucosamine (GlH+) nor N-acetylglucosamine yields a capsaicin complex with the definite stoichiometry. The monosaccharides recognize capsaicin under only a controlled condition; the same phenomena are predicted for biological systems and nanocarriers based on polysaccharides such as chitosan.


Subject(s)
Acetylglucosamine/chemistry , Capsaicin/chemistry , Glucosamine/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Thermodynamics
6.
Org Biomol Chem ; 12(31): 5981-9, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24988384

ABSTRACT

The electrochemical oxidation in DMSO of four new derivatives of caffeic acid (CA), two dimeric amides and two dimeric esters, is reported in this article. Although all of them contain two caffeoyl electroactive moieties in their structures, small differences in the connectors result in interesting changes in the electrochemical behaviour of this type of compound. Voltammograms of both esters do not show appreciable differences between them; however, an electrografting process occurs during the electrochemical oxidation of one of them, which suggests that the identity of the connector has an influence on the ability of the diesters to interact with the electrode surface. On the other hand, voltammograms of dimeric amides were more complex than those corresponding to dimeric esters. Electronic effects of diamine connectors seem to be related to the fact that caffeoyl moieties suffer from separate oxidation processes in both compounds. In contrast to their ferulic acid (FA) analogues, which have been studied by our group before, CA dimeric amides do not interact in an appreciable way with the electrode surface. In addition, a relationship between the oxidation potential and the inhibition percentage of the DPPH (2,2'-diphenyl-1-picrylhydrazyl) radical was not observed for the symmetrical CA derivatives studied here. However, the molecular flexibility seems to play a very important role in the Free Radical Scavenging Activity (FRSA) of this type of compound.

SELECTION OF CITATIONS
SEARCH DETAIL
...