Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958990

ABSTRACT

It has been suggested that the neuro-visceral integration works asymmetrically and that this asymmetry is dynamic and modifiable by physio-pathological influences. Aminopeptidases of the renin-angiotensin system (angiotensinases) have been shown to be modifiable under such conditions. This article analyzes the interactions of these angiotensinases between the left or right frontal cortex (FC) and the same enzymes in the hypothalamus (HT), pituitary (PT), adrenal (AD) axis (HPA) in control spontaneously hypertensive rats (SHR), in SHR treated with a hypotensive agent in the form of captopril (an angiotensin-converting enzyme inhibitor), and in SHR treated with a hypertensive agent in the form of the L-Arginine hypertensive analogue L-NG-Nitroarginine Methyl Ester (L-NAME). In the control SHR, there were significant negative correlations between the right FC with HPA and positive correlations between the left FC and HPA. In the captopril group, the predominance of negative correlations between the right FC and HPA and positive correlations between the HPA and left FC was maintained. In the L-NAME group, a radical change in all types of interactions was observed; particularly, there was an inversion in the predominance of negative correlations between the HPA and left FC. These results indicated a better balance of neuro-visceral interactions after captopril treatment and an increase in these interactions in the hypertensive animals, especially in those treated with L-NAME.


Subject(s)
Captopril , Hypertension , Rats , Animals , Rats, Inbred SHR , Captopril/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Blood Pressure , Hypertension/drug therapy , Hypothalamus , Aminopeptidases , Frontal Lobe
2.
Front Nutr ; 10: 1272139, 2023.
Article in English | MEDLINE | ID: mdl-37860036

ABSTRACT

Introduction: Previously we have reported a r16S gene next generation sequencing study on the effect of high fat diets in the intestinal microbiota using a murine model. However, many important microbial traits occur at strain level and, in order to detect these population changes, culture-dependent approaches need to be applied. With this goal, we decided to study a very well-known commensal genus, Enterococcus, and therefore, intestinal enterococci methodically isolated during the above-mentioned experiment were analyzed. Materials and methods: A collection of 75 distinct enterococcal strains isolated from feces of mice fed a standard diet or high-fat diets enriched with butter, refined olive oil, or extra virgin olive oil and after 0, 6 or 12 weeks of diet, were genetically and phenotypically characterized in search of virulence factors, biogenic amine production and antibiotic resistance. All strains were tested for the susceptibility in vitro to two virgin olive oil polyphenols, oleuropein (the bitter principle of olives) and hydroxytyrosol (derived from oleuropein by enzymatic hydrolysis and responsible for the high stability of olive oil). Results: No drastic polyphenol effect was found except at high concentrations. However, when carrying out a comparative statistical study in the 75 strains of the collection according to the different diets, we have detected significant differences between the strains isolated from mice fed with a diet enriched with virgin olive oil and the rest of the diets. EVOO strains also presented less resistance to antibiotics and a more beneficial profile overall. Discussion: These results support the prebiotic role of polyphenols, showing how they are able to modulate the set of strains that comprises a genus in the gut, allowing them to adapt to a changing environment in the host's intestine and possibly exerting effects on its physiology.

3.
Molecules ; 28(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903509

ABSTRACT

Extra virgin olive oil (EVOO) has proven to yield a better health outcome than other saturated fats widely used in the Western diet, including a distinct dysbiosis-preventive modulation of gut microbiota. Besides its high content in unsaturated fatty acids, EVOO also has an unsaponifiable polyphenol-enriched fraction that is lost when undergoing a depurative process that gives place to refined olive oil (ROO). Comparing the effects of both oils on the intestinal microbiota of mice can help us determine which benefits of EVOO are due to the unsaturated fatty acids, which remain the same in both, and which benefits are a consequence of its minority compounds, mainly polyphenols. In this work, we study these variations after only six weeks of diet, when physiological changes are not appreciated yet but intestinal microbial alterations can already be detected. Some of these bacterial deviations correlate in multiple regression models with ulterior physiological values, at twelve weeks of diet, including systolic blood pressure. Comparison between the EVOO and ROO diets reveals that some of these correlations can be explained by the type of fat that is present in the diet, while in other cases, such as the genus Desulfovibrio, can be better understood if the antimicrobial role of the virgin olive oil polyphenols is considered.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Mice , Animals , Olive Oil , Butter , Diet , Polyphenols
4.
Biomedicines ; 10(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36289718

ABSTRACT

Brain dopamine, in relation to the limbic system, is involved in cognition and emotion. These functions are asymmetrically processed. Hypertension not only alters such functions but also their asymmetric brain pattern as well as their bilateral pattern of neurovisceral integration. The central and peripheral renin-angiotensin systems, particularly the aminopeptidases involved in its enzymatic cascade, play an important role in blood pressure control. In the present study, we report how these aminopeptidases from left and right cortico-limbic locations, plasma and systolic blood pressure interact among them in spontaneously hypertensive rats (SHR) unilaterally depleted of dopamine. The study comprises left and right sham and left and right lesioned (dopamine-depleted) rats as research groups. Results revealed important differences in the bilateral behavior comparing sham left versus sham right, lesioned left versus lesioned right, and sham versus lesioned animals. Results also suggest an important role for the asymmetrical functioning of the amygdala in cardiovascular control and an asymmetrical behavior in the interaction between the medial prefrontal cortex, hippocampus and amygdala with plasma, depending on the left or right depletion of dopamine. Compared with previous results of a similar study in Wistar-Kyoto (WKY) normotensive rats, the asymmetrical behaviors differ significantly between both WKY and SHR strains.

5.
PLoS One ; 17(8): e0271634, 2022.
Article in English | MEDLINE | ID: mdl-35972974

ABSTRACT

Butter and virgin olive oil (EVOO) are two fats differing in their degree of saturation and insaponifiable fraction. EVOO, enriched in polyphenols and other minority components, exerts a distinct effect on health. Using next generation sequencing, we have studied early and long-term effects of both types of fats on the intestinal microbiota of mice, finding significant differences between the two diets in the percentage of certain bacterial taxa, correlating with hormonal, physiological and metabolic parameters in the host. These correlations are not only concomitant, but most noticeably some of the changes detected in the microbial percentages at six weeks are correlating with changes in physiological values detected later, at twelve weeks. Desulfovibrionaceae/Desulfovibrio/D. sulfuricans stand out by presenting at six weeks a statistically significant higher percentage in the butter-fed mice with respect to the EVOO group, correlating with systolic blood pressure, food intake, water intake and insulin at twelve weeks. This not only suggests an early implication in the probability of developing altered physiological and biochemical responses later on in the host lifespan, but also opens the possibility of using this genus as a marker in the risk of suffering different pathologies in the future.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Animals , Biomarkers , Butter , Diet, High-Fat , Mice , Olive Oil/pharmacology
6.
Biomedicines ; 10(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35203536

ABSTRACT

In emotional processing, dopamine (DA) plays an essential role, and its deterioration involves important consequences. Under physiological conditions, dopamine exhibits brain asymmetry and coexists with various neuropeptides that can coordinate the processing of brain functions. Brain asymmetry can extend into a broader concept of asymmetric neurovisceral integration, including behavior. The study of the activity of neuropeptide regulatory enzymes (neuropeptidases, NPs) is illustrative. We have observed that the left and right brain areas interact intra- and inter-hemispherically, as well as with peripheral tissues or with physiological parameters such as blood pressure or with behaviors such as turning preference. To obtain data that reflect this integrative behavior, we simultaneously analyzed the impact of left or right brain DA depletion on the activity of various NPs in corticolimbic regions of the left and right hemispheres, such as the medial prefrontal cortex, amygdala and hippocampus, as well as on the plasma activity of the same aminopeptidase activities (APs) and on systolic blood pressure (SBP). Intra- and inter-hemispheric interactions as well as the interactions of NPs from the left or right hemispheres were analyzed with the same plasma APs and the SBP obtained from sham and from left or right lesioned rats. The results demonstrate a complex profile depending on the hemisphere considered. They definitively confirm an asymmetric neurovisceral integration and reveal a higher level of inter-hemispheric corticolimbic interactions including with SBP after left dopamine depletion.

7.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360587

ABSTRACT

In the present study, we analyzed the activity of several aminopeptidases (angiotensinases) involved in the metabolism of various angiotensin peptides, in pituitary and adrenal glands of untreated Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) or treated with the antihypertensive drugs captopril and propranolol or with the L-Arginine hypertensive analogue L-NG-Nitroarginine Methyl Ester (L-NAME). Intra- and inter-gland correlations between angiotensinase activities were also calculated. Membrane-bound alanyl-, cystinyl-, and glutamyl-aminopeptidase activities were determined fluorometrically using aminoacyl-ß-naphthylamide as substrates. Depending on the type of angiotensinase analyzed, the results reflect a complex picture showing substantial differences between glands, strains, and treatments. Alanyl-aminopeptidase responsible for the metabolism of Ang III to Ang IV appears to be the most active angiotensinase in both pituitary and adrenals of WKY and particularly in SHR. Independently of treatment, most positive correlations are observed in the pituitary gland of WKY whereas such positive correlations are predominant in adrenals of SHR. Negative inter-gland correlations were observed in control SHR and L-NAME treated WKY. Positive inter-gland correlations were observed in captopril-treated SHR and propranolol-treated WKY. These results may reflect additional mechanisms for increasing or decreasing systolic blood pressure in WKY or SHR.


Subject(s)
Adrenal Glands/metabolism , Antihypertensive Agents/pharmacology , Endopeptidases/metabolism , Hypertension/metabolism , Hypotension/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Pituitary Gland/metabolism , Adrenal Glands/drug effects , Animals , Captopril/pharmacology , Endopeptidases/genetics , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic , Hypertension/drug therapy , Hypertension/pathology , Hypotension/drug therapy , Hypotension/pathology , Male , Pituitary Gland/drug effects , Rats , Rats, Inbred SHR , Rats, Inbred WKY
8.
Nutrients ; 13(2)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572630

ABSTRACT

The brain renin-angiotensin system (RAS) has been recently involved in the homeostatic regulation of energy. Our goal was to analyse the influence of a diet rich in saturated fatty acids (butter) against one enriched in monounsaturated fatty acids (olive oil) on hypothalamic RAS, and their relationship with the metabolism of fatty acids. Increases in body weight and visceral fat, together with an increase in aminopeptidase A expression and reductions in AngII and AngIV were observed in the hypothalamus of animals fed with the butter diet. In this group, a marked reduction in the expression of genes related to lipid metabolism (LPL, CD36, and CPT-1) was observed in liver and muscle. No changes were found in terms of body weight, total visceral fat and the expression of hepatic genes related to fatty acid metabolism in the olive oil diet. The expressions of LPL and CD36 were reduced in the muscles, although the decrease was lower than in the butter diet. At the same time, the fasting levels of leptin were reduced, no changes were observed in the hypothalamic expression of aminopeptidase A and decreases were noted in the levels of AngII, AngIV and AngIII. These results support that the type of dietary fat is able to modify the hypothalamic profile of RAS and the body energy balance, related to changes in lipid metabolism.


Subject(s)
Butter , Hypothalamus/metabolism , Lipid Metabolism , Olive Oil/metabolism , Renin-Angiotensin System/physiology , Angiotensin II/analogs & derivatives , Angiotensin II/metabolism , Angiotensin III/metabolism , Animals , Body Weight , CD36 Antigens/metabolism , Diet, High-Fat , Energy Metabolism , Fasting/metabolism , Gene Expression , Glutamyl Aminopeptidase/metabolism , Intra-Abdominal Fat/growth & development , Leptin/metabolism , Lipid Metabolism/genetics , Lipoprotein Lipase/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred ICR , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Weight Gain
9.
Int J Mol Sci ; 21(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570702

ABSTRACT

E. faecalis is a commensal bacterium with specific strains involved in opportunistic and nosocomial infections. Therefore, it is important to know how the strains of this species are selected in the gut. In this study, fifteen E. faecalis strains, isolated over twelve weeks from the faeces of mice fed standard chow or one of three high fat diets enriched with extra virgin olive oil, refined olive oil or butter were subjected to a genetic "Multilocus Sequence Typing" study that revealed the presence of mainly two genotypes, ST9 and ST40, the latter one prevailing at the end of the research. A V3-V5 sequence comparison of the predominant ST40 strain (12B3-5) in a metagenomic study showed that this sequence was the only E. faecalis present in the mouse cohort after twelve weeks. The strain was subjected to a comparative proteomic study with a ST9 strain by 2D electrophoresis and mass spectrometry. After comparing the results with a E. faecalis database, unshared entries were compared and 12B3-5 showed higher antimicrobial production as well as greater protection from environmental factors such as xenobiotics, oxidative stress and metabolite accumulation, which could be the reason for its ability to outcompete other possible rivals in an intestinal niche.


Subject(s)
Bacterial Proteins/metabolism , Diet, High-Fat/adverse effects , Enterococcus faecalis/classification , Multilocus Sequence Typing/methods , Animals , Diet, High-Fat/classification , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Genotype , Male , Mice , Prevalence , Proteomics
10.
Front Mol Biosci ; 7: 94, 2020.
Article in English | MEDLINE | ID: mdl-32500082

ABSTRACT

Insulin-regulated aminopeptidase (IRAP, cystinyl aminopeptidase, CysAP) and aminopeptidase M (alanyl aminopeptidase, AlaAP) are closely related enzymes involved in cognitive, metabolic, and cardiovascular functions. These functions may be modulated by the type of fat used in the diet. In order to analyze a possible coordinated response of both enzymes we determined simultaneously their activities in frontal cortex, liver, and plasma of adult male rats fed diets enriched with fats differing in their percentages of saturated, mono or polyunsaturated fatty acids such as sesame, sunflower, fish, olive, Iberian lard, and coconut. The systolic blood pressure, food intake, body and liver weight as well as glucose and total cholesterol levels in plasma were measured. The type of fat in the diet influences the enzymatic activities depending on the enzyme and its location. These results suggest cognitive improvement properties for diets with predominance of polyunsaturated fatty acids. Physiological parameters such as systolic blood pressure, food intake, and biochemical factors such as cholesterol and glucose in plasma were also modified depending on the type of diet, supporting beneficial properties for diets rich in mono and polyunsaturated fatty acids. Inter-tissue correlations between the analyzed parameters were also modified depending on the type of diet. If the type of fat used in the diet modifies the behavior and relationship between CysAP and AlaAP in and between frontal cortex, liver and plasma, the functions in which they are involved could also be modified.

11.
Sci Rep ; 9(1): 16098, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31695104

ABSTRACT

A lateralized distribution of neuropeptidase activities in the frontal cortex of normotensive and hypertensive rats has been described depending on the use of some vasoactive drugs and linked to certain mood disorders. Asymmetrical neuroperipheral connections involving neuropeptidases from the left or right hemisphere and aminopeptidases from the heart or plasma have been suggested to play a role in this asymmetry. We hypothesize that such asymmetries could be extended to the connection between the brain and physiologic parameters and metabolic factors from plasma and urine. To assess this hypothesis, we analyzed the possible correlation between neuropeptidases from the left and right frontal cortex with peripheral parameters in normotensive (Wistar Kyoto [WKY]) rats and hypertensive rats (spontaneously hypertensive rats [SHR]) untreated or treated with vasoactive drugs such as captopril, propranolol and L-nitro-arginine methyl ester. Neuropeptidase activities from the frontal cortex were analyzed fluorometrically using arylamide derivatives as substrates. Physiological parameters and metabolic factors from plasma and urine were determined using routine laboratory techniques. Vasoactive drug treatments differentially modified the asymmetrical neuroperipheral pattern by changing the predominance of the correlations between peripheral parameters and central neuropeptidase activities of the left and right frontal cortex. The response pattern also differed between SHR and WKY rats. These results support an asymmetric integrative function of the organism and suggest the possibility of a different neurometabolic response coupled to particular mood disorders, depending on the selected vasoactive drug.


Subject(s)
Captopril/administration & dosage , Hypertension/drug therapy , Animals , Antihypertensive Agents/administration & dosage , Blood Pressure/drug effects , Frontal Lobe/drug effects , Frontal Lobe/enzymology , Humans , Hypertension/enzymology , Hypertension/metabolism , Hypertension/physiopathology , Male , NG-Nitroarginine Methyl Ester/administration & dosage , Peptide Hydrolases/metabolism , Propranolol/administration & dosage , Rats , Rats, Inbred SHR , Rats, Inbred WKY
12.
Endocr Regul ; 53(2): 59-64, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31517628

ABSTRACT

OBJECTIVE: Enkephalins are neuropeptides involved in functions such as pain modulation and/ or cognitive processes. It has been reported that dietary fat modifies enkephalins in the brain. Since enkephalins are hydrolyzed by enkephalinases, the study of the influence of dietary fats, differing in their degree of saturation, on brain fatty acids content and enkephalinase activity is important to understand its regulatory role on neuropeptides under different type of diets. METHODS: We analyzed enkephalinase activity, assayed with alanine-ß-naphthylamide as sub-strate, in frontal cortex of adult male rats fed diets supplemented with fish oil, olive oil or coconut oil, which markedly differed in the saturation of their fatty acids. RESULTS: Rats fed a diet enriched with coconut oil had lower soluble enkephalinase activity than the group fed olive oil (p<0.01) and fish oil (p<0.05) whereas rats fed a diet enriched with fish oil had lower membrane-bound enkephalinase activity than the group fed with olive (p<0.001) or coconut oil (p<0.05). Significant negative correlations were observed between certain fatty acids and enkephalinase activities in the groups fed with olive and coconut oils. No correlations were observed in the group fed with fish oil. CONCLUSIONS: Dietary fat modifies enkephalinase activity in the frontal cortex depending on the degree of saturation of the used oil. It is postulated that the functions, in which enkephalins are involved, such as pain modulation or cognitive functions, may also be affected according to the type of oil used in the diet.


Subject(s)
Dietary Fats/pharmacology , Fatty Acids/metabolism , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Neprilysin/metabolism , Animals , Brain Chemistry/drug effects , Coconut Oil/pharmacology , Diet , Fish Oils/pharmacology , Lipid Metabolism/drug effects , Male , Neprilysin/drug effects , Olive Oil/pharmacology , Rats , Rats, Wistar
13.
Int J Mol Sci ; 20(17)2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31480694

ABSTRACT

A comparative study on potential risks was carried out in a collection of 50 enterococci isolated from faeces of mice fed a standard or a high-fat diet enriched with extra virgin olive oil, refined olive oil or butter, at the beginning, after six weeks and after twelve weeks of experiments. Strains were biochemically assessed and genetically characterized. E. faecalis and E. casseliflavus were the most frequently isolated species in any diet and time points. Apart from the fact of not having isolated any strain from the virgin olive oil group during the last balance, we found statistically significant differences p < 0 . 05 among the diets in the percentage of antibiotic resistance and in the presence of the enterococcal surface protein gene (esp), as well as a tendency p < 0 . 1 for the presence of the tyrosine decarboxylase gene (tdc) to increase over time in the group of isolates from the standard diet. When the resistance of the strains to virgin or refined olive oil was studied, only the group of enterococci from high fat diets showed a significantly higher percentage of resistance to refined olive oil p < 0 . 05 , while both types of oil equally inhibited those isolated from the standard diet p > 0 . 05 .


Subject(s)
Diet, High-Fat , Drug Resistance, Microbial , Enterococcus/isolation & purification , Feces/microbiology , Animals , Biogenic Amines/metabolism , Drug Resistance, Microbial/drug effects , Enterococcus/pathogenicity , Male , Mice, Inbred ICR , Olive Oil/pharmacology , Phylogeny , Random Amplified Polymorphic DNA Technique , Virulence Factors/metabolism
14.
Vitam Horm ; 111: 105-129, 2019.
Article in English | MEDLINE | ID: mdl-31421697

ABSTRACT

After millennia of knowledge of opium, it was only recently that endogenous substances called opioids with similar properties to opium and derivatives were discovered. The first to be discovered were enkephalins. In addition to the regulation of their synthesis and expression of receptors, an important mechanism for the regulation of their functions carried out by multiple proteolytic enzymes acting at all levels of their structure is described. The action of such enzymes, known as enkephalinases, is also regulated by endogenous and exogenous factors which ultimately affect the control of the enkephalins's action. For therapeutic purposes, it is not only necessary to develop specific inhibitors but also to acquire a deep knowledge of the influence that such factors exert on their activities. This knowledge could help us to establish adapted therapeutic strategies in the treatment of pain or other processes in which enkephalinases are involved. In this chapter, some of these regulatory factors are discussed, such as regional and subcellular distribution, developmental changes, diurnal variations, hormonal influences, stress, dietary factors or interactions with other neurotransmitters.


Subject(s)
Neprilysin/metabolism , Animals , Brain/growth & development , Brain/ultrastructure , Brain Chemistry/physiology , Circadian Rhythm/physiology , Diet , Endocrine System/physiology , Enkephalins/physiology , Female , Homeostasis , Humans , Male , Neprilysin/analysis , Pain Management/methods , Stress, Psychological/enzymology , Subcellular Fractions/chemistry , Tissue Distribution
15.
Microorganisms ; 7(2)2019 Feb 23.
Article in English | MEDLINE | ID: mdl-30813410

ABSTRACT

Extra virgin olive oil (EVOO) has been reported to have a distinct influence on gut microbiota in comparison to other fats, with its physiological benefits widely studied. However, a large proportion of the population consumes olive oil after a depurative process that not only mellows its taste, but also deprives it of polyphenols and other minority components. In this study, we compare the influence on the intestinal microbiota of a diet high in this refined olive oil (ROO) with other fat-enriched diets. Swiss Webster mice were fed standard or a high-fat diet enriched with EVOO, ROO, or butter (BT). Physiological parameters were also evaluated. At the end of the feeding period, DNA was extracted from feces and the 16S rRNA was pyrosequenced. The group fed ROO behaved differently to the EVOO group in half the families with statistically significant differences among the diets, with higher comparative levels in three families-Desulfovibrionaceae, Spiroplasmataceae, and Helicobacteraceae-correlating with total cholesterol. These results are again indicative of a link between specific diets, certain physiological parameters and the prevalence of some taxa, but also support the possibility that polyphenols and minor components of EVOO are involved in some of the proposed effects of this fat through the modulation of the intestinal microbiota.

16.
Article in English | MEDLINE | ID: mdl-30555423

ABSTRACT

Thyroid disorders affect the hypothalamic-pituitary-adrenal axis with important consequences on the cardiovascular function in which the renin-angiotensin system plays a major role. Hypo and hyperthyroidism influence the classic main components of the renin-angiotensin system. However, the behavior of other elements of the renin-angiotensin system such as Ang III, Ang 2-10, Ang IV, or AT4, regulated by angiotensinase enzymes such as alanyl- (AlaAP), cystinyl- (CysAP), glutamyl- (GluAP), or aspartyl-aminopeptidase (AspAP), has not yet been described. In order to obtain a comprehensive view on the response of the renin-angiotensin system in the hypothalamic-pituitary-adrenal axis of animals with thyroid disorders, these enzyme activities were simultaneously analyzed fluorometrically, using arylamide derivatives as substrates in hypothalamus, anterior and posterior pituitary, adrenals and plasma of euthyroid, hypothyroid, and hyperthyroid rats, and their intra- and inter-tissue correlations were evaluated. The response is depending on the type of enzyme studied, its location and the thyroid status. Anterior pituitary, adrenals and plasma were mainly affected by the thyroid disorders. In the anterior pituitary, GluAP and AspAP increased in hypothyroid rats. In adrenals, AlaAP and CysAP decreased in hypothyroid whereas GluAP and AspAP decreased in hyperthyroid rats. In plasma, while AlaAP increased in hypo- and hyperthyroid rats, CysAP and GluAP decreased only in hyperthyroid. In comparison with euthyroid, intra-tissue correlations decreased in hypothyroid but inter-tissue correlations decreased mainly in hyperthyroid rats. Thyroid disorders also produced a disruption in the pattern of inter-tissue correlations observed in euthyroid. These results suggest that thyroid hormone levels hit components of the renin-angiotensin system and may influence the paracrine and endocrine cross talk between cells.

17.
PLoS One ; 13(1): e0190368, 2018.
Article in English | MEDLINE | ID: mdl-29293629

ABSTRACT

The type of fat in the diet determinates the characteristics of gut microbiota, exerting a major role in the development of metabolic syndrome. We hypothesize that a diet enriched with extra virgin olive oil (EVOO) has a distinctive effect on the intestinal microbiome in comparison with an enriched butter diet (BT) and this effect is related to the physiological benefits exerted by EVOO. Swiss Webster mice were fed standard (SD) or two high fat diets enriched with EVOO or butter. Hormonal, physiological and metabolic parameters were evaluated. At the end of the feeding period, DNA was extracted from faeces and the 16S rRNA genes were pyrosequenced. Among the main significant differences found, BT triggered the highest values of systolic blood pressure, correlating positively with the percentage of Desulfovibrio sequences in faeces, which in turn showed significantly higher values in BT than in EVOO. EVOO had the lowest values of plasmatic insulin, correlating inversely with Desulfovibrio, and had the lowest plasmatic values of leptin which correlated inversely with Sutterellaceae, Marispirillum and Mucilaginibacter dageonensis, the three showing significantly higher percentages in EVOO. The lowest total cholesterol levels in plasma were detected in SD, correlating positively with Prevotella and Fusicatenibacter, both taxa with significantly greater presence in SD. These results may be indicative of a link between specific diets, certain physiological parameters and the prevalence of some taxa, supporting the possibility that in some of the proposed effects of virgin olive oil the modulation of intestinal microbiota could be involved.


Subject(s)
Butter , Diet , Disease Models, Animal , Gastrointestinal Microbiome , Metabolic Syndrome/physiopathology , Olive Oil , Animals , Feces/microbiology , Male , Mice , RNA, Ribosomal, 16S/genetics
18.
Plant Foods Hum Nutr ; 73(1): 1-6, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29230708

ABSTRACT

Fat type in diet is responsible for specific changes in gut microbiota (GM). Extra virgin olive oil (EVOO) has been shown to be beneficial for blood pressure and to produce effects on GM. To analyze the cause-effect relationship between intestinal microbial changes and blood pressure, we studied the effect of EVOO on fecal microbiota and systolic blood pressure (SBP) levels in spontaneously hypertensive rats (SHR). SHR were fed either an enriched EVOO diet or a standard diet for a period of 12 weeks. At the end of the experimental period, the microbial profiles in the feces were studied in both groups by using PCR-denaturing gradient gel electrophoresis. Real-time PCR was used to quantify the selected bacterial groups. The results demonstrated significant differences when using Lactobacillus (p<0.05), clostridia XIV (p<0.01) and universal (p<0.05) primers. A significant (r=-0.475; p=0.04) inverse correlation between the abundance of clostridia XIV and SBP, which depends on the type of diet, was also observed. Finally, the results suggested an increase in the microbial diversity of the feces of the animals fed the EVOO diet. These results strongly connect the pattern of GM in SHR fed a diet enriched with EVOO to the lower levels of SBP observed in these animals at the end of the feeding period.


Subject(s)
Blood Pressure/drug effects , Gastrointestinal Microbiome/drug effects , Olive Oil/pharmacology , Animals , Denaturing Gradient Gel Electrophoresis , Feces/microbiology , Gastrointestinal Microbiome/genetics , Lactobacillus/drug effects , Male , RNA, Ribosomal, 16S , Rats, Inbred SHR
19.
Life Sci ; 192: 9-17, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29155297

ABSTRACT

AIMS: Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) differ in their renin-angiotensin system function and sympathetic tone. The metabolism of angiotensins and vasopressin depends on the action of certain aminopeptidases whose activity may be influenced by the autonomic nervous system. Their regulation may differ between WKY and SHR in hypothalamus and plasma according to the sympathetic tone. We analyzed aminopeptidases responsible for the hydrolysis of certain angiotensins, vasopressin, cholecystokinin or enkephalins in hypothalamus and plasma of WKY and SHR in untreated controls rats and under beta-adrenoceptor blockade. Systolic blood pressure, food intake, water intake and diuresis were measured as parameters modulated by the autonomic nervous system and the above mentioned peptides. MAIN METHODS: Glutamyl-, aspartyl-, cystinyl- and alanyl-aminopeptidase activities were analyzed fluorimetrically in plasma and hypothalamus of control and propranolol-treated (100mg/kg/day administered in drinking water for 1month) WKY and SHR, using arylamide derivatives as substrates. KEY FINDINGS: An opposite response of aminopeptidases to propranolol treatment between plasma and hypothalamus was observed in either WKY and SHR. Furthermore, the behavior of aminopeptidases was inversed between WKY and SHR either in hypothalamus and plasma: while the activity increased in hypothalamus and decreased in plasma of WKY, it decreased in hypothalamus and increased in plasma of SHR. SIGNIFICANCE: These results revealed an inverse response of aminopeptidases between hypothalamus and plasma and also an opposite behavior of these enzymes between WKY and SHR in hypothalamus and plasma. These observations support the involvement of the sympathetic system in the modulation of aminopeptidase activities.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Aminopeptidases/metabolism , Hypertension/drug therapy , Hypertension/enzymology , Hypothalamus/enzymology , Propranolol/pharmacology , Aminopeptidases/blood , Animals , Blood Pressure/drug effects , Diuresis/drug effects , Drinking/drug effects , Eating/drug effects , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Species Specificity
20.
Int J Mol Sci ; 18(8)2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28777292

ABSTRACT

The aim of the present work was to improve our knowledge on the mechanisms underlying the beneficial or deleterious effects on testicular function of the so-called Mediterranean and Western diet by analyzing glutamyl aminopeptidase (GluAP), gamma glutamyl transpeptidase (GGT) and dipeptidyl peptidase IV (DPP IV) activities in testis, as enzymes involved in testicular function. Male Wistar rats (6 months old) were fed for 24 weeks with three different diets: standard (S), an S diet supplemented with virgin-olive-oil (20%) (VOO), or a S diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). At the end of the experimental period, plasma lipid profiled (total triglycerides, total cholesterol and cholesterol fractions (HDL, LDL and VDL)) were measured. Enzymatic activities were determined by fluorimetric methods in soluble (sol) and membrane-bound (mb) fractions of testicular tissue using arylamide derivatives as substrates. Results indicated an increase in plasmatic triglycerides, total cholesterol, LDL and VLDL in Bch. A significant increase of mb GluAP and GGT activities was also found in this diet in comparison with the other two diets. Furthermore, significant and positive correlations were established between these activities and plasma triglycerides and/or total cholesterol. These results support a role for testicular GluAP and GGT activities in the effects of saturated fat (Western diet) on testicular functions. In contrast, VOO increased sol DPP IV activity in comparison with the other two diets, which support a role for this activity in the effects of monounsaturated fat (Mediterranean diet) on testicular function. The present results strongly support the influence of fatty acids and cholesterol on testicular GluAP and GGT activities and also provide support that the reported beneficial influence of the Mediterranean diet in male fertility may be mediated in part by an increase of testicular sol DPP IV activity.


Subject(s)
Butter , Cholesterol/pharmacology , Dietary Fats, Unsaturated/pharmacology , Olive Oil/pharmacology , Testis/enzymology , Animals , Body Weight/drug effects , Cholesterol/blood , Dipeptidyl Peptidase 4/metabolism , Glutamyl Aminopeptidase/metabolism , Male , Rats, Wistar , Solubility , Testis/drug effects , gamma-Glutamyltransferase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...