Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(18): e2307448, 2024 May.
Article in English | MEDLINE | ID: mdl-38447160

ABSTRACT

The synthesis of a family of chiral and enantiomerically pure pyridyl-diamide (pda) ligands that upon complexation with europium [Eu(CF3SO3)3] result in chiral complexes with metal centered luminescence is reported; the sets of enantiomers giving rise to both circular dichroism (CD) and circularly polarized luminescence (CPL) signatures. The solid-state structures of these chiral metallosupramolecular systems are determined using X-ray diffraction showing that the ligand chirality is transferred from solution to the solid state. This optically favorable helical packing arrangement is confirmed by recording the CPL spectra from the crystalline assembly by using steady state and enantioselective differential chiral contrast (EDCC) CPL Laser Scanning Confocal Microscopy (CPL-LSCM) where the two enantiomers can be clearly distinguished.

2.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38539799

ABSTRACT

Manganosalen complexes are a class of catalytic antioxidants with beneficial effects against different neurological disorders according to various in vitro and in vivo studies. The interest in the factors that determine their antioxidant activity is based on the fact that they are key to achieving more efficient models. In this work, we report a set of new manganosalen complexes, thoroughly characterized in the solid state and in solution by different techniques. The chelating Schiff base ligands used were prepared from condensation of different substituted hydroxybenzaldehydes with 1,2-diaminoethane and 1,3-diaminopropane. The antioxidant activity of the new models was tested through superoxide dismutase and catalase probes in conjunction with the studies about their neuroprotective effects in human SH-SY5Y neuroblastoma cells in an oxidative stress model. The ability to scavenge excess reactive oxygen species (ROS) varied depending on the manganosalen models, which also yielded different improvements in cell survival. An assessment of the different factors that affect the oxidant activity for these complexes, and others previously reported, revealed the major influence of the structural factors versus the redox properties of the manganosalen complexes.

3.
J Exp Clin Cancer Res ; 43(1): 33, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281027

ABSTRACT

BACKGROUND: Previous studies by our group have shown that oxidative phosphorylation (OXPHOS) is the main pathway by which pancreatic cancer stem cells (CSCs) meet their energetic requirements; therefore, OXPHOS represents an Achille's heel of these highly tumorigenic cells. Unfortunately, therapies that target OXPHOS in CSCs are lacking. METHODS: The safety and anti-CSC activity of a ruthenium complex featuring bipyridine and terpyridine ligands and one coordination labile position (Ru1) were evaluated across primary pancreatic cancer cultures and in vivo, using 8 patient-derived xenografts (PDXs). RNAseq analysis followed by mitochondria-specific molecular assays were used to determine the mechanism of action. RESULTS: We show that Ru1 is capable of inhibiting CSC OXPHOS function in vitro, and more importantly, it presents excellent anti-cancer activity, with low toxicity, across a large panel of human pancreatic PDXs, as well as in colorectal cancer and osteosarcoma PDXs. Mechanistic studies suggest that this activity stems from Ru1 binding to the D-loop region of the mitochondrial DNA of CSCs, inhibiting OXPHOS complex-associated transcription, leading to reduced mitochondrial oxygen consumption, membrane potential, and ATP production, all of which are necessary for CSCs, which heavily depend on mitochondrial respiration. CONCLUSIONS: Overall, the coordination complex Ru1 represents not only an exciting new anti-cancer agent, but also a molecular tool to dissect the role of OXPHOS in CSCs. Results indicating that the compound is safe, non-toxic and highly effective in vivo are extremely exciting, and have allowed us to uncover unprecedented mechanistic possibilities to fight different cancer types based on targeting CSC OXPHOS.


Subject(s)
Pancreatic Neoplasms , Ruthenium , Humans , Oxidative Phosphorylation , Ruthenium/pharmacology , Mitochondria/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Neoplastic Stem Cells/metabolism
4.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37239998

ABSTRACT

The study of the inherent factors that influence the isolation of one type of metallosupramolecular architecture over another is one of the main objectives in the field of Metallosupramolecular Chemistry. In this work, we report two new neutral copper(II) helicates, [Cu2(L1)2]·4CH3CN and [Cu2(L2)2]·CH3CN, obtained by means of an electrochemical methodology and derived from two Schiff-based strands functionalized with ortho and para-t-butyl groups on the aromatic surface. These small modifications let us explore the relationship between the ligand design and the structure of the extended metallosupramolecular architecture. The magnetic properties of the Cu(II) helicates were explored by Electron Paramagnetic Resonance (EPR) spectroscopy and Direct Current (DC) magnetic susceptibility measurements.


Subject(s)
Copper , Schiff Bases , Schiff Bases/chemistry , Ligands , Copper/chemistry , Electron Spin Resonance Spectroscopy
5.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36768568

ABSTRACT

The design of artificial helicoidal molecules derived from metal ions with biological properties is one of the objectives within metallosupramolecular chemistry. Herein, we report three zinc helicates derived from a family of bisthiosemicarbazone ligands with different terminal groups, Zn2(LMe)2∙2H2O 1, Zn2(LPh)2∙2H2O 2 and Zn2(LPhNO2)23, obtained by an electrochemical methodology. These helicates have been fully characterized by different techniques, including X-ray diffraction. Biological studies of the zinc(II) helicates such as toxicity assays with erythrocytes and interaction studies with proteins and oligonucleotides were performed, demonstrating in all cases low toxicity and an absence of covalent interaction with the proteins and oligonucleotides. The in vitro cytotoxicity of the helicates was tested against MCF-7 (human breast carcinoma), A2780 (human ovarian carcinoma cells), NCI-H460 (human lung carcinoma cells) and MRC-5 (normal human lung fibroblasts), comparing the IC50 values with cisplatin. We will try to demonstrate if the terminal substituent of the ligand precursor exerts any effect in toxicity or in the antitumor activity of the zinc helicates.


Subject(s)
Ovarian Neoplasms , Humans , Female , Cell Line, Tumor , Metals , Zinc/pharmacology , Zinc/chemistry , Oligonucleotides , Ligands
6.
Dalton Trans ; 51(34): 12915-12920, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35946990

ABSTRACT

The mechanism of carbamate activation promoted by different metal ions has been explored in this work. The reaction of the carbamate ligand H2L with chloride metal salts (M = Ni, Cu, Zn, Cd) leads to the coordination of the metal ions to the ligand, causing hydrolysis of the systems. This self-immolation process results in mononuclear dihydrazone complexes, carbon dioxide and the release of alcohol species from the pendant groups of the carbamate ligand. The conditions under which this process occurs have been studied in detail.


Subject(s)
Carbamates , Metals , Hydrolysis , Ions , Ligands
7.
Inorg Chem ; 61(35): 14121-14130, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35984909

ABSTRACT

We report two different approaches to isolate neutral and cationic mesocate-type metallosupramolecular architectures derived from coinage monovalent ions. For this purpose, we use a thiocarbohydrazone ligand, H2L (1), conveniently tuned with bulky phosphine groups to stabilize the MI ions and prevent ligand crossing to achieve the selective formation of mesocates. The neutral complexes [Cu2(HL)2] (2), [Ag2(HL)2] (3), and [Au2(HL)2] (4) were prepared by an electrochemical method, while the cationic complexes [Cu2(H2L)2](PF6)2 (5), [Cu2(H2L)2](BF4)2 (6), [Ag2(H2L)2](PF6)2 (7), [Ag4(HL)2](NO3)2 (8), and [Au2(H2L)2]Cl2 (9) were obtained by using a metal salt as the precursor. All of the complexes are neutral or cationic dinuclear mesocates, except the silver nitrate derivative, which exhibits a tetranuclear cluster mesocate architecture. The crystal structures of the neutral and cationic copper(I), silver(I), and gold(I) complexes allow us to analyze the influence of synthetic methodology or the counterion role on both the micro- and macrostructures of the mesocates.

8.
RSC Adv ; 12(6): 3500-3504, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35425354

ABSTRACT

Herein, we describe an approach for the on-demand disassembly of dimeric peptides using a palladium-mediated cleavage of a designed self-immolative linker. The utility of the strategy is demonstrated for the case of dimeric basic regions of bZIP transcription factors. While the dimer binds designed DNA sequences with good affinities, the peptide-DNA complex can be readily dismounted by addition of palladium reagents that trigger the cleavage of the spacer, and the release of unfunctional monomeric peptides.

9.
Inorg Chem ; 59(19): 14306-14317, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32962345

ABSTRACT

We present two ligands containing a N-ethyl-4-(trifluoromethyl)benzenesulfonamide group attached to either a 6,6'-(azanediylbis(methylene))dipicolinic acid unit (H3DPASAm) or a 2,2'-(1,4,7-triazonane-1,4-diyl)diacetic acid macrocyclic platform (H3NO2ASAm). These ligands were designed to provide a pH-dependent relaxivity response upon complexation with Mn2+ in aqueous solution. The protonation constants of the ligands and the stability constants of the Mn2+ complexes were determined using potentiometric titrations complemented by spectrophotometric experiments. The deprotonations of the sulfonamide groups of the ligands are characterized by protonation constants of log KiH = 10.36 and 10.59 for DPASAm3- and HNO2ASAm2-, respectively. These values decrease dramatically to log KiH = 6.43 and 5.42 in the presence of Mn2+, because of the coordination of the negatively charged sulfonamide groups to the metal ion. The higher log KiH value in [Mn(DPASAm)]- is related to the formation of a seven-coordinate complex, while the metal ion in [Mn(NO2ASAm)]- is six-coordinated. The X-ray crystal structure of Na[Mn(DPASAm)(H2O)]·2H2O confirms the formation of a seven-coordinate complex, where the coordination environment is fulfilled by the donor atoms of the two picolinate groups, the amine N atom, the N atom of the sulfonamide group, and a coordinated water molecule. The lower conditional stability of the [Mn(NO2ASAm)]- complex and the lower protonation constant of the sulfonamide group results in complex dissociation at relatively high pH (<7.0). However, protonation of the sulfonamide group in [Mn(DPASAm)]- falls into the physiologically relevant pH window and causes a significant increase in relaxivity from r1p = 3.8 mM-1 s-1 at pH 9.0 to r1p = 8.9 mM-1 s-1 at pH 4.0 (10 MHz, 25 °C).

11.
J Phys Chem Lett ; 11(17): 7218-7223, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32787310

ABSTRACT

Here, we report the application of surface-enhanced Raman scattering (SERS) spectroscopy as a rapid and practical tool for assessing the formation of coordinative adducts between nucleic acid guanines and ruthenium polypyridyl reagents. The technology provides a practical approach for the wash-free and quick identification of nucleic acid structures exhibiting sterically accessible guanines. This is demonstrated for the detection of a quadruplex-forming sequence present in the promoter region of the c-myc oncogene, which exhibits a nonpaired, reactive guanine at a flanking position of the G-quartets.

12.
Chemistry ; 26(44): 9792-9813, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32602145

ABSTRACT

The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.


Subject(s)
Nucleic Acids/chemistry , Peptides/chemistry , Proteins/chemistry , Transition Elements/chemistry , Ligands
13.
ACS Nano ; 14(5): 5382-5391, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32105057

ABSTRACT

When nanoparticles (NPs) are exposed to biological media, proteins are adsorbed, forming a so-called protein corona (PC). This cloud of protein aggregates hampers the targeting and transport capabilities of the NPs, thereby compromising their biomedical applications. Therefore, there is a high interest in the development of technologies that allow control over PC formation, as this would provide a handle to manipulate NPs in biological fluids. We present a strategy that enables the reversible disruption of the PC using external stimuli, thereby allowing a precise regulation of NP cellular uptake. The approach, demonstrated for gold nanoparticles (AuNPs), is based on a biorthogonal, supramolecular host-guest interactions between an anionic dye bound to the AuNP surface and a positively charged macromolecular cage. This supramolecular complex effectively behaves as a zwitterionic NP ligand, which is able not only to prevent PC formation but also to disrupt a previously formed hard corona. With this supramolecular stimulus, the cellular internalization of AuNPs can be enhanced by up to 30-fold in some cases, and even NP cellular uptake in phagocytic cells can be regulated. Additionally, we demonstrate that the conditional cell uptake of purposely designed gold nanorods can be used to selectively enhance photothermal cell death.


Subject(s)
Metal Nanoparticles , Nanoparticles , Protein Corona , Anions , Gold , Proteins
14.
Chem Sci ; 10(39): 8930-8938, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-32110291

ABSTRACT

The cytosolic delivery of hydrophilic, anionic molecular probes and therapeutics is a major challenge in chemical biology and medicine. Herein, we describe the design and synthesis of peptide-cage hybrids that allow an efficient supramolecular binding, cell membrane translocation and cytosolic delivery of a number of anionic dyes, including pyranine, carboxyfluorescein and several sulfonate-containing Alexa dyes. This supramolecular caging strategy is successful in different cell lines, and the dynamic carrier mechanism has been validated by U-tube experiments. The high efficiency of the reported approach allowed intracellular pH tracking by exploiting the ratiometric excitation of the pyranine fluorescent probe.

15.
Inorg Chem ; 58(1): 881-889, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30585726

ABSTRACT

The effect of the ligand and/or metal-related factors on the formation of tristhiosemicarbazone metallosupramolecular complexes has been studied in this work. The crystal structures of zinc(II) and lead(II) tristhiosemicarbazone mesocates and a hydrolyzed cadmium(II) helicate let us better rationalize some factors involved in the selective formation of helicates or mesocates.

16.
Chimia (Aarau) ; 72(11): 791-801, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30514422

ABSTRACT

Transition-metal catalysis has changed the way in which chemical reactions can be accomplished. While most metal-catalyzed reactions have been achieved in organic solvents, recent work has demonstrated that many of these transformations can be made compatible with water. These discoveries have stimulated the search for metal catalysts that are capable of achieving designed reactions in biological settings, and eventually behave as non-natural enzymes working in native cellular environments. Although this new field of research is still taking its first steps, there is a growing number of publications in the area, and one can predict that it will steadily grow in the years to come. Here we will briefly review some of the main contributions in the area. The contents have been organized according to the type of transformation and transition metal catalysts involved in the process.


Subject(s)
Metals/chemistry , Catalysis , Transition Elements/chemistry
17.
ACS Catal ; 8(7): 6055-6061, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-30018848

ABSTRACT

Discrete palladium(II) complexes featuring purposely designed phosphine ligands can promote depropargylation and deallylation reactions in cell lysates. These complexes perform better than other palladium sources, which apparently are rapidly deactivated in such hostile complex media. This good balance between reactivity and stability allows the use of these discrete phosphine palladium complexes in living mammalian cells, whereby they can mediate similar transformations. The presence of a phosphine ligand in the coordination sphere of palladium also provides for the introduction of targeting groups, such as hydrophobic phosphonium moieties, which facilitate the accumulation of the complexes in mitochondria.

18.
J Am Chem Soc ; 140(13): 4469-4472, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29562135

ABSTRACT

We describe an approach to regulate the cellular uptake of small gold nanoparticles using supramolecular chemistry. The strategy relies on the functionalization of AuNPs with negatively charged pyranines, which largely hamper their penetration in cells. Cellular uptake can be activated in situ through the addition of cationic covalent cages that specifically recognize the fluorescent pyranine dyes and counterbalance the negative charges. The high selectivity and reversibility of the host-guest recognition activates cellular uptake, even in protein-rich biological media, as well as its regulation by rational addition of either cage or pyranine.

19.
Org Lett ; 19(5): 1068-1071, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28221046

ABSTRACT

A facile one-pot synthesis of 3-amino-[1,2,4]-triazolo[4,3-a]pyridines from thiosemicarbazides through anion mediated synthesis is reported. Thiosemicarbazides derived from 2-hydrazino pyridine, 5-chloro 2-hydrazino pyridine, and 2-hydrazine quinoline were formed in situ as anion receptors in the presence of TBAF. Under microwave heating, thiosemicarbazides furnished the triazolo pyridines in good to moderate yields. The formation of the thiosemicarbazides hydrogen bonding anion receptors was critical in cascading the reaction toward the formation of the triazolo pyridines.

20.
Nat Commun ; 7: 12538, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27600651

ABSTRACT

The development of transition metal catalysts capable of promoting non-natural transformations within living cells can open significant new avenues in chemical and cell biology. Unfortunately, the complexity of the cell makes it extremely difficult to translate standard organometallic chemistry to living environments. Therefore, progress in this field has been very slow, and many challenges, including the possibility of localizing active metal catalysts into specific subcellular sites or organelles, remain to be addressed. Herein, we report a designed ruthenium complex that accumulates preferentially inside the mitochondria of mammalian cells, while keeping its ability to react with exogenous substrates in a bioorthogonal way. Importantly, we show that the subcellular catalytic activity can be used for the confined release of fluorophores, and even allows selective functional alterations in the mitochondria by the localized transformation of inert precursors into uncouplers of the membrane potential.


Subject(s)
Metals/metabolism , Ruthenium Compounds/metabolism , Transition Elements/metabolism , Catalysis , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Humans , Metals/chemistry , Molecular Structure , Ruthenium Compounds/chemistry , Transition Elements/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...