Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973348

ABSTRACT

The Cu2+ complexes of three [1 + 1] azacyclophane macrocycles having the 1H-pyrazole ring as the spacer and the pentaamine 1,5,8,11,15-pentaazadecane (L1) or hexaamines 1,5,8,12,15,19-hexaazanonadecane (L2) and 1,5,9,13,17,21-hexaazaheneicosane (L3) as bridges show endo- coordination of the pyrazolate bridge giving rise to discrete monomeric species. Previously reported pyrazolacyclophanes evidenced, however, exo-coordination with the formation of dimeric species of 2 : 2, 3 : 2 or even 4 : 2 Cu2+ : L stoichiometry. The complexes have been characterized in solution using potentiometric studies, UV-Vis spectroscopy, paramagnetic NMR, cyclic voltammetry and mass spectrometry. The measurements show that all three ligands have as many protonation steps in water as secondary amines are in the bridge, while they are able to form both mono- and binuclear Cu2+ species. The crystal structures of the complexes [Cu(HL1)Br]Br(1+x)(ClO4)(1-x)·yH2O (1) and [Cu2(H-1L2)Cl(ClO4)](ClO4)·H2O·C2H5OH (2) have been solved by X-ray diffraction studies. In 1 the metal ion lies at one side of the macrocyclic cavity being coordinated by one nitrogen of the pyrazolate moiety and the three consecutive nitrogen atoms of the polyamine bridge. The other nitrogen of the pyrazole ring is hydrogen-bonded to an amine group. In 2 the two metal ions are interconnected by a pyrazolate bis(monodentate) moiety and complete their coordination spheres with three amines and either a bromide or a perchlorate anion, which occupy the axial positions of distorted square pyramid geometries. Paramagnetic NMR studies of the binuclear complexes confirm the coordination pattern observed in the crystal structures. Cyclic voltamperommetry data show potentials within the adequate range to exhibit superoxide dismutase (SOD) activity. The IC50 values calculated by McCord-Fridovich enzymatic assays show that the binuclear Cu2+ complexes of L2 and L3 have SOD activities that rank amongst the highest ones reported so far.

2.
Chemistry ; 30(37): e202401331, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38687026

ABSTRACT

Despite decades of research, Parkinson's disease is still an idiopathic pathology for which no cure has yet been found. This is partly explained by the multifactorial character of most neurodegenerative syndromes, whose generation involves multiple pathogenic factors. In Parkinson's disease, two of the most important ones are the aggregation of α-synuclein and oxidative stress. In this work, we address both issues by synthesizing a multifunctional nanozyme based on grafting a pyridinophane ligand that can strongly coordinate CuII, onto biodegradable PEGylated polyester nanoparticles. The resulting nanozyme exhibits remarkable superoxide dismutase activity together with the ability to inhibit the self-induced aggregation of α-synuclein into amyloid-type fibrils. Furthermore, the combination of the chelator and the polymer produces a cooperative effect whereby the resulting nanozyme can also halve CuII-induced α-synuclein aggregation.


Subject(s)
Copper , Superoxide Dismutase , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Superoxide Dismutase/metabolism , Superoxide Dismutase/chemistry , Copper/chemistry , Humans , Protein Aggregates/drug effects , Nanoparticles/chemistry , Polymers/chemistry , Polymers/pharmacology , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Oxidative Stress/drug effects , Chelating Agents/chemistry , Chelating Agents/pharmacology , Polyesters/chemistry , Polyethylene Glycols/chemistry , Ligands
3.
Dalton Trans ; 52(38): 13758-13768, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37720931

ABSTRACT

The chelator diacetyl-bis(N4-methylthiosemicarbazone) (ATSM) and its complexes with CuII and ZnII are becoming increasingly investigated for medical applications such as PET imaging for anti-tumour therapy and the treatment of amyotrophic lateral sclerosis. However, the solubility in water of both the ligand and the complexes presents certain limitations for in vitro studies. Moreover, the stability of the CuII and ZnII complexes and their metal exchange reaction against the potential biological competitor human serum albumin (HSA) has not been studied in depth. In this work it was observed that the ATSM with an added carboxylic group into the structure increases its solubility in aqueous solutions without altering the coordination mode and the conjugated system of the ligand. The poorly water-soluble CuII- and ZnII-ATSM complexes were prevented from precipitating due to the binding to HSA. Both HSA and ATSM show a similar thermodynamic affinity for ZnII. Finally, the CuII-competition experiments with EDTA and the water-soluble ATSM ligands yielded an apparent log Kd at pH 7.4 of about -19. When ATSM was added to CuII- and ZnII-loaded HSA, withdrawing of ZnII was kinetically favoured, but this metal is slowly substituted by the CuII afterwards taken from HSA so that this protein could be considered as a source of CuII for ATSM.


Subject(s)
Coordination Complexes , Organometallic Compounds , Thiosemicarbazones , Humans , Organometallic Compounds/chemistry , Diacetyl , Serum Albumin, Human , Ligands , Zinc , Thiosemicarbazones/chemistry , Copper Radioisotopes , Radiopharmaceuticals
4.
Pharmaceutics ; 15(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36986853

ABSTRACT

Due to the urgent need for finding effective and free of secondary effect treatments for every clinical form of Leishmaniasis, a series of synthetic xylene, pyridine and, pyrazole azamacrocycles were tested against three Leishmania species. A total of 14 compounds were tested against J774.2 macrophage cells which were models for host cells, and against promastigote and amastigote forms of each studied Leishmania parasite. Amongst these polyamines, one proved effective against L. donovani, another one for L. braziliensis and L. infantum, and another one was selective solely for L. infantum. These compounds showed leishmanicidal activity and reduced parasite infectivity and dividing ability. Action mechanism studies gave a hint that compounds were active against Leishmania due to their ability to alter parasite metabolic pathways and reduce (except Py33333) parasitic Fe-SOD activity.

5.
Angew Chem Int Ed Engl ; 62(2): e202211361, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36305539

ABSTRACT

Two oxoiron(IV) isomers (R 2a and R 2b) of general formula [FeIV (O)(R PyNMe3 )(CH3 CN)]2+ are obtained by reaction of their iron(II) precursor with NBu4 IO4 . The two isomers differ in the position of the oxo ligand, cis and trans to the pyridine donor. The mechanism of isomerization between R 2a and R 2b has been determined by kinetic and computational analyses uncovering an unprecedented path for interconversion of geometrical oxoiron(IV) isomers. The activity of the two oxoiron(IV) isomers in hydrogen atom transfer (HAT) reactions shows that R 2a reacts one order of magnitude faster than R 2b, which is explained by a repulsive noncovalent interaction between the ligand and the substrate in R 2b. Interestingly, the electronic properties of the R substituent in the ligand pyridine ring do not have a significant effect on reaction rates. Overall, the intrinsic structural aspects of each isomer define their relative HAT reactivity, overcoming changes in electronic properties of the ligand.


Subject(s)
Hydrogen , Oxygen , Hydrogen/chemistry , Ligands , Oxygen/chemistry , Iron/chemistry , Pyridines/chemistry , Oxidation-Reduction
6.
Chem Commun (Camb) ; 58(32): 5021-5024, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35373809

ABSTRACT

A novel amino-nanozyme, based on boehmite nanoparticles (BNPs) functionalised with a tetra-azapyridinophane (L1), has been designed to undermine some of the key issues underlying Huntington disease. L1 forms Cu2+ complexes with a striking SOD activity, while when grafted to the BNPs displays mitoROS scavenging properties and ability to disaggregate mutant huntingtin deposits in cells.


Subject(s)
Antioxidants , Huntington Disease , Aluminum Hydroxide , Aluminum Oxide , Antioxidants/pharmacology , Humans , Inclusion Bodies
7.
Inorg Chem ; 61(1): 368-383, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34933551

ABSTRACT

Polyiodide networks are currently of great practical interest for the preparation of new electronic materials. The participation of metals in the formation of these networks is believed to improve their mechanical performance and thermal stability. Here we report the results on the construction of polyiodide networks obtained using Cu(II) complexes of a series of pyridinol-based tetraazacyclophanes as countercations. The assembly of these crystalline polyiodides takes place from aqueous solutions on the basis of similar structural elements, the [CuL]2+ and [Cu(H-1L)]+ (L = L2, L2-Me, L2-Me3) complex cations, so that the peculiarities induced by the increase of N-methylation of ligands, the structural variable of ligands, can be highlighted. First, solution equilibria involving ligands and complexes were analyzed (potentiometry, NMR, UV-vis, ITC). Then, the appropriate conditions could be selected to prepare polyiodides based on the above complex cations. Single-crystal XRD analysis showed that the coordination of pyridinol units to two metal ions is a prime feature of these ligands, leading to polymeric coordination chains of general formula {[Cu(H-1L)]}nn+ (L = L2-Me, L2-Me3). In the presence of the I-/I2 couple, the polymerization tendency stops with the formation of [(CuL)(CuH-1L)]3+ (L = L2-Me, L2-Me3) dimers which are surrounded by polyiodide networks. Moreover, coordination of the pyridinol group to two metal ions transforms the surface charge of the ring from negative to markedly positive, generating a suitable environment for the assembly of polyiodide anions, while N-methylation shifts the directional control of the assembly from H-bonds to I···I interactions. In fact, an extended concatenation of iodine atoms occurs around the complex dimeric cations, the supramolecular I···I interactions become shorter and shorter, fading into stronger forces dominated by the orbital overlap, which is promising for effective electronic materials.

8.
ACS Infect Dis ; 7(12): 3168-3181, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34734686

ABSTRACT

Leishmaniasis is one of the world's most neglected diseases with a worldwide prevalence of 12 million people. There are no effective human vaccines for its prevention, and outdated drugs hamper treatment. Therefore, research aimed at developing new therapeutic tools to fight leishmaniasis remains a crucial goal today. With this purpose in mind, here, we present 10 new compounds made up by linking alkylated ethylenediamine units to pyridine or quinoline heterocycles with promising in vitro and in vivo efficacy against promastigote and amastigote forms of Leishmania infantum, Leishmania donovani, and Leishmania braziliensis species. Three compounds (2, 4, and 5) showed a selectivity index much higher in the amastigote form than the reference drug glucantime. These three derivatives affected the parasite infectivity rates; the result was lower parasite infectivity rates than glucantime tested at an IC25 dose. In addition, these derivatives were substantially more active against the three Leishmania species tested than glucantime. The mechanism of action of these compounds has been studied, showing alterations in glucose catabolism and leading to greater levels of iron superoxide dismutase inhibition. These molecules could be potential candidates for leishmaniasis chemotherapy due to their effectiveness and their ready synthesis.


Subject(s)
Antiprotozoal Agents , Leishmania braziliensis , Leishmania infantum , Leishmaniasis , Antiprotozoal Agents/pharmacology , Diamines/pharmacology , Humans , Leishmaniasis/drug therapy
9.
Molecules ; 26(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203562

ABSTRACT

Nucleic acids are essential biomolecules in living systems and represent one of the main targets of chemists, biophysics, biologists, and nanotechnologists. New small molecules are continuously developed to target the duplex (ds) structure of DNA and, most recently, RNA to be used as therapeutics and/or biological tools. Stimuli-triggered systems can promote and hamper the interaction to biomolecules through external stimuli such as light and metal coordination. In this work, we report on the interaction with ds-DNA and ds-RNA of two aza-macrocycles able to coordinate Zn2+ metal ions and form binuclear complexes. The interaction of the aza-macrocycles and the Zn2+ metal complexes with duplex DNA and RNA was studied using UV thermal and fluorescence indicator displacement assays in combination with theoretical studies. Both ligands show a high affinity for ds-DNA/RNA and selectivity for ds-RNA. The ability to interact with these duplexes is blocked upon Zn2+ coordination, which was confirmed by the low variation in the melting temperature and poor displacement of the fluorescent dye from the ds-DNA/RNA. Cell viability assays show a decrease in the cytotoxicity of the metal complexes in comparison with the free ligands, which can be associated with the observed binding to the nucleic acids.


Subject(s)
Coordination Complexes , Cytotoxins , DNA/chemistry , RNA, Double-Stranded/chemistry , Zinc , Animals , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , Humans , Ligands , Vero Cells , Zinc/chemistry , Zinc/pharmacology
10.
Molecules ; 25(14)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664239

ABSTRACT

Tetraaza-macrocyclic pyridinophane L-Ts, decorated with a p-toluenesulfonyl (tosyl; Ts) group, appear to be a useful tool to provide evidence on how the interplay of various supramolecular forces can help stabilise exotic anionic species such as tribromide (Br3-) anions. Indeed, crystals of (H2L-Ts)(Br3)1.5(NO3)0.5 unexpectedly grew from an acidic (HNO3) aqueous solution of L-Ts in the presence of Br- anions. The crystal structure of this compound was determined by single crystal XRD analysis. Hydrogen bonds, salt-bridges, anion-, - stacking, and van der Waals interactions contribute to stabilising the crystal lattice. The observation of two independent Br3- anions stuck over the π-electron densities of pyridine and tosyl ligand groups, one of them being sandwiched between two pyridine rings, corroborates the significance of anion-π interactions for N-containing heterocycles. We show herein the possibility of detecting anion-π contacts from fingerprint plots generated by Hirshfeld surface analysis, demonstrating the effective usage of this structural investigation technique to further dissect individual contributions of stabilising supramolecular forces.


Subject(s)
Anions/chemistry , Bromides/chemistry , Heterocyclic Compounds/chemistry , Pyridines/chemistry , Crystallography, X-Ray/methods , Hydrogen Bonding , Ligands , Water/chemistry
11.
Chem Commun (Camb) ; 56(54): 7511-7514, 2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32510075

ABSTRACT

Quantum chemical and multiscale calculations reveal the mechanistic pathway of two superoxide dismutase mimetic N-alkylated tetra-azacyclophane copper complexes with remarkable activity. The arrangement of the binding site afforded by the bulky alkyl substituents and the coordinated water molecule as a proton source play key roles in the reaction mechanism.


Subject(s)
Coordination Complexes/metabolism , Copper/chemistry , Superoxide Dismutase/metabolism , Alkylation , Coordination Complexes/chemistry , Crystallography, X-Ray , Ethers, Cyclic/chemistry , Humans , Molecular Dynamics Simulation , Quantum Theory , Superoxide Dismutase/chemistry
12.
J Med Chem ; 63(3): 1199-1215, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31935092

ABSTRACT

In vitro viability assays against a representative panel of human cancer cell lines revealed that polyamines L1a and L5a displayed remarkable activity with IC50 values in the micromolar range. Preliminary research indicated that both compounds promoted G1 cell cycle arrest followed by cellular senescence and apoptosis. The induction of apoptotic cell death involved loss of mitochondrial outer membrane permeability and activation of caspases 3/7. Interestingly, L1a and L5a failed to activate cellular DNA damage response. The high intracellular zinc-chelating capacity of both compounds, deduced from the metal-specific Zinquin assay and ZnL2+ stability constant values in solution, strongly supports their cytotoxicity. These data along with quantum mechanical studies have enabled to establish a precise structure-activity relationship. Moreover, L1a and L5a showed appropriate drug-likeness by in silico methods. Based on these promising results, L1a and L5a should be considered a new class of zinc-chelating anticancer agents that deserves further development.


Subject(s)
Antineoplastic Agents/pharmacology , Chelating Agents/pharmacology , Polyamines/pharmacology , Zinc/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Chelating Agents/chemical synthesis , Chelating Agents/pharmacokinetics , Drug Design , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Models, Chemical , Molecular Structure , Polyamines/chemical synthesis , Polyamines/pharmacokinetics , Quantum Theory , Structure-Activity Relationship , Zinc/chemistry
13.
Chembiochem ; 21(8): 1167-1177, 2020 04 17.
Article in English | MEDLINE | ID: mdl-31701633

ABSTRACT

Currently, significant efforts are devoted to designing small molecules able to bind selectively to guanine quadruplexes (G4s). These noncanonical DNA structures are implicated in various important biological processes and have been identified as potential targets for drug development. Previously, a series of triphenylamine (TPA)-based compounds, including macrocyclic polyamines, that displayed high affinity towards G4 DNA were reported. Following this initial work, herein a series of second-generation compounds, in which the central TPA has been functionalised with flexible and adaptive linear polyamines, are presented with the aim of maximising the selectivity towards G4 DNA. The acid-base properties of the new derivatives have been studied by means of potentiometric titrations, UV/Vis and fluorescence emission spectroscopy. The interaction with G4s and duplex DNA has been explored by using FRET melting assays, fluorescence spectroscopy and circular dichroism. Compared with previous TPA derivatives with macrocyclic substituents, the new ligands reported herein retain the G4 affinity, but display two orders of magnitude higher selectivity for G4 versus duplex DNA; this is most likely due to the ability of the linear substituents to embrace the G4 structure.


Subject(s)
DNA/chemistry , DNA/metabolism , Drug Design , G-Quadruplexes , Polyamines/chemistry , Fluorescence Resonance Energy Transfer , Ligands , Structure-Activity Relationship
14.
RSC Adv ; 9(71): 41549-41560, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-35541615

ABSTRACT

Two binucleating hezaaza macrocycles containing a pyridinol spacer have been prepared and characterised. Protonation studies indicate the deprotonation of the phenol group at relatively low pH values with the concomitant occurrence of a keto-enolic equilibrium. These ligands readily form binuclear Cu2+ and Zn2+ complexes as denoted by potentiometric and spectroscopic studies. The binding of the metals yields to the ready deprotonation of the phenol with the stabilisation of the keto form that results in complexes of greater stabilities than the analogous ones containing pyridine as spacer instead of pyridine. Mixed Cu2+-Zn2+-complexes were also detected in aqueous solutions containing equimolar amounts of Cu2+, Zn2+ and ligands. The binuclear Cu2+ complexes show significant SOD activity as proved by the McCord-Fridovich assays. The binuclear Cu2+ complexes of the ligands grafted to boehmite nanoparticles (BNPs) show a remarkable increase in SOD activity, which reaches 8-fold in one of the systems. The observed increase can be ascribed to the positive ζ-potential of the BNPs since the same complexes anchored to silica nanoparticles with negative ζ-potential do not show any apparent increase in activity. This behaviour is reminiscent of the positively charged funnel found in CuZnSOD, which has the electroactive copper ion at its end.

15.
Inorg Chem ; 57(17): 10961-10973, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30129755

ABSTRACT

A new tetraaza-pyridinophane macrocycle (L1) N-alkylated with two isopropyl and one methyl groups symmetrically disposed has been prepared and its behavior compared with those of the unsubstituted pyridinophane (L3) and the related compound with three methyl groups (L2). The protonation studies show that, first, a proton binds to the central methylated amine group of L1, while, second protonation leads to a reorganization of the protons that are at this stage attached to the lateral isopropylated amines. The X-ray structure of [HL1]+ agrees with the UV-vis and NMR studies as well as with the results of DFT calculations. The stability of the Cu2+ complexes decreases on increasing the bulkiness of the alkyl substituents of the amine groups. The crystal structures of [CuL1Cl](ClO4) and [CuL1(H2O)](ClO4)2·H2O show square pyramidal coordination geometries with the ligands disposed in a bent L-shaped conformation. Kinetic studies indicate that the rates of both complexation and ligand dissociation decrease with the bulkiness of the substituents, so that the stability changes are surely the results of compensating effects, complex formation dominating over complex dissociation. The pH dependence of the rate constants for complex formation cannot be explained by consideration of rapid pre-equilibria involving the different protonated forms of the ligand, and it has been interpreted in terms of a mechanism involving an acid-base equilibrium for a reaction intermediate. NBT SOD studies show that the Cu2+ complex of the bulkiest L1 ligand is the one having the highest activity (IC50 = 0.26(5) µM, kcat = 13.7 × 106 M-1 s-1) which can be associated with the poorer σ-donor ability of the tertiary amino groups, and the rigidity of the system, caused by the bulky isopropyl groups.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Superoxide Dismutase/metabolism , Alkylating Agents/chemistry , Computer Simulation , Hydrogen-Ion Concentration , Ions , Kinetics , Ligands , Molecular Conformation , X-Ray Diffraction
16.
Chem Commun (Camb) ; 54(31): 3871-3874, 2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29594279

ABSTRACT

The binuclear Cu2+ complex of a pyridinophane polyamine ligand ranking amongst the fastest SOD mimetics so far reported displays a remarkable SOD activity enhancement when grafted to the surface of boehmite (γ-AlO(OH)) nanoparticles (BNPs).

SELECTION OF CITATIONS
SEARCH DETAIL
...