Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cosmet Dermatol ; 21(9): 3993-4000, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35050544

ABSTRACT

OBJECTIVE: To assess the in vitro efficacy on antioxidant potential, protection against global oxidative stress, and effect on collagen neosynthesis of minimalist formula (Peptide-C ampoules product) containing 10% natural vitamin C, rice and lupin bio-peptides, hyaluronic acid, and Vichy volcanic mineralizing water (active mix). METHODS: In-tube quantitative tests ("in-tube screening") assessed global antioxidant properties, anti-lipid peroxidation, anti-protein glycosylation, and metalloproteinase inhibition (anti-collagenase, anti-elastase, and anti-hyaluronidase activity) properties of the formula. Protection against oxidative stress was evaluated on human keratinocyte monolayer cultures, and collagen neosynthesis was quantified on fibroblast monolayer cultures treated with supernatants from product-treated reconstructed human epidermis. RESULTS: Product (5% concentration) showed high antioxidant ability (blocking 99.0% oxidation), protection against oxidative stress damage (51.8% lipid peroxidation and 37.8% protein glycosylation decreases), and inhibition of hyaluronidase (21.9%), elastase (47.1%), and collagenase (61.8%). The protective effect was validated on human keratinocyte monolayer cultures in the presence of active mix (0.025%). Oxidative stress (ROS) was reduced by 99.0%, while global oxidative stress (RMS) induced by pollution, UVA radiation, and a combination of both factors was reduced by 48.94%, 8.7%, and 96.28%, respectively. The product increased collagen neosynthesis (11.21%) by cellular dialogue in fibroblasts incubated with product/mix-treated-RHE supernatants. CONCLUSION: The combination of ingredients in the product showed high global antioxidant capacity, as well as a protective effect against oxidative stress induced by UVA, pollution, or both combined factors and an ability to stimulate collagen neosynthesis in in vitro studies, which support the clinical efficacy of this product.


Subject(s)
Antioxidants , Hyaluronic Acid , Aging , Antioxidants/chemistry , Ascorbic Acid/pharmacology , Fibroblasts , Humans , Hyaluronic Acid/metabolism , Hyaluronic Acid/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Skin , Ultraviolet Rays/adverse effects , Water/metabolism
2.
Antioxidants (Basel) ; 10(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34679721

ABSTRACT

A new series of twenty-three 1,5-benzodiazepin-2(3H)-ones were synthesized and evaluated in the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays as a new chemotype with antioxidant and good drug-like properties. All of the derivatives showed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y and the human hepatoma HepG2 cell lines. Experimental solubility in bio-relevant media showed a good relationship with melting points in this series. Five compounds with the best antioxidant properties showed neuroprotectant activity against H2O2-induced oxidative stress in the SH-SY5Y cell line. From them, derivatives 4-phenyl-1H-1,5-benzodiazepin-2(3H)-one (18) and 4-(3,4,5-trimethoxyphenyl)-1H-1,5-benzodiazepin-2(3H)-one (20) yielded good neuroprotection activity in the same neuronal cell line under 6-OHD and MPP+ insults as in vitro models of mitochondrial dysfunction and oxidative stress in Parkinson's disease (PD). Both compounds also demonstrated a significant reduction of intracellular Reactive Oxygen Species (ROS) and superoxide levels, in parallel with a good improvement of the Mitochondrial Membrane Potential (ΔΨm). Compared with curcumin, compound 18 better reduced lipid peroxidation levels, malondialdehyde (MDA), in SH-SY5Y cells under oxidative stress pressure and recovered intracellular glutathione synthetase (GSH) levels. Apoptosis and caspase-3 levels of SH-SY5Y under H2O2 pressure were also reduced after treatment with 18. Neuroprotection in neuron-like differentiated SH-SY5Y cells was also achieved with 18. In summary, this family of 1,5-benzodiazepin-2-ones with an interesting antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitutes a new promising chemical class with high potential for the development of new therapeutic agents against PD.

3.
Molecules ; 23(8)2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30042315

ABSTRACT

A series of fourteen new asymmetrical 1,3-diketone derivatives have been synthesized and evaluated in the ABTS, FRAP and DPPH assays as a new chemotype with antioxidant and drug-like properties. All the compounds displayed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y cell line. Among them, (3Z,5E)-6-(2,5-difluoro-4-hydroxy-phenyl)-1,1,1-trifluoro-4-hydroxyhexa-3,5-dien-2-one (6b) and (3Z,5E)-6-(2,3-difluoro-4-hydroxy-phenyl)-1,1,1-trifluoro-4-hydroxyhexa-3,5-dien-2-one (7b) with excellent solubility and chemical stability in biorelevant media, have also shown a similar Fe+2 chelation behavior to that of curcumin. Additionally, both derivatives 6b and 7b have afforded good neuroprotection activity against H2O2 induced oxidative stress in the same neuronal cell line, with a significant reduction of intracellular ROS levels, in parallel with a good recovery of the Mitochondrial Membrane Potential (ΔΨm). Compounds 6b and 7b with a promising antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitute a new interesting chemical class with high potential as new therapeutic agents against neurodegenerative diseases.


Subject(s)
Antioxidants/pharmacology , Iron Chelating Agents/pharmacology , Ketones/pharmacology , Neuroprotective Agents/pharmacology , Quinones/pharmacology , Antioxidants/chemical synthesis , Apoptosis/drug effects , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Curcumin/pharmacology , Humans , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Inhibitory Concentration 50 , Iron Chelating Agents/chemical synthesis , Ketones/chemical synthesis , Membrane Potential, Mitochondrial/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/chemical synthesis , Oxidative Stress/drug effects , Picrates/antagonists & inhibitors , Quinones/chemical synthesis , Structure-Activity Relationship , Sulfonic Acids/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...