Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Arch Bronconeumol (Engl Ed) ; 57(3): 186-194, 2021 Mar.
Article in English, Spanish | MEDLINE | ID: mdl-32253119

ABSTRACT

INTRODUCTION: Primary ciliary dyskinesia (PCD) is characterized by an alteration in the ciliary structure causing difficulty in the clearance of respiratory secretions. Diagnosis is complex and based on a combination of techniques. The objective of this study was to design a gene panel including all known causative genes, and to corroborate their diagnostic utility in a cohort of Spanish patients. METHODS: This was a multicenter cross-sectional study of patients with a high suspicion of PCD, according to European Respiratory Society criteria, designed around a gene panel for massive sequencing using SeqCap EZ capture technology that included 44 genes associated with PCD. RESULTS: We included 79 patients, 53 of whom had a diagnosis of confirmed or highly probable PCD. The sensitivity of the gene panel was 81.1%, with a specificity of 100%. Candidate variants were found in some of the genes of the panel in 43 patients with PCD, 51.2% (22/43) of whom were homozygotes and 48.8% (21/43) compound heterozygotes. The most common causative genes were DNAH5 and CCDC39. We found 52 different variants, 36 of which were not previously described in the literature. CONCLUSIONS: The design and implementation of a tailored gene panel produces a high yield in the genetic diagnosis of PCD. This panel provides a better understanding of the causative factors involved in these patients and lays down the groundwork for future therapeutic approaches.


Subject(s)
Kartagener Syndrome , Cross-Sectional Studies , Homozygote , Humans , Kartagener Syndrome/diagnosis , Mutation
2.
J Clin Med ; 9(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182294

ABSTRACT

Primary ciliary dyskinesia (PCD) is an autosomal recessive rare disease caused by an alteration of ciliary structure. Immunofluorescence, consisting in the detection of the presence and distribution of cilia proteins in human respiratory cells by fluorescence, has been recently proposed as a technique to improve understanding of disease-causing genes and diagnosis rate in PCD. The objective of this study is to determine the accuracy of a panel of four fluorescently labeled antibodies (DNAH5, DNALI1, GAS8 and RSPH4A or RSPH9) as a PCD diagnostic tool in the absence of transmission electron microscopy analysis. The panel was tested in nasal brushing samples of 74 patients with clinical suspicion of PCD. Sixty-eight (91.9%) patients were evaluable for all tested antibodies. Thirty-three cases (44.6%) presented an absence or mislocation of protein in the ciliary axoneme (15 absent and 3 proximal distribution of DNAH5 in the ciliary axoneme, 3 absent DNAH5 and DNALI1, 7 absent DNALI1 and cytoplasmatic localization of GAS8, 1 absent GAS8, 3 absent RSPH9 and 1 absent RSPH4A). Fifteen patients had confirmed or highly likely PCD but normal immunofluorescence results (68.8% sensitivity and 100% specificity). In conclusion, immunofluorescence analysis is a quick, available, low-cost and reliable diagnostic test for PCD, although it cannot be used as a standalone test.

3.
Eur Respir J ; 55(2)2020 02.
Article in English | MEDLINE | ID: mdl-31831582

ABSTRACT

BACKGROUND: Pulmonary alveolar microlithiasis (PAM) is caused by genetic variants in the SLC34A2 gene, which encodes the sodium-dependent phosphate transport protein 2B (NaPi-2b). PAM is characterised by deposition of calcium phosphate concretions (microliths) in the alveoli leading to pulmonary dysfunction. The variant spectrum of SLC34A2 has not been well investigated and it is not yet known whether a genotype-phenotype correlation exists. METHODS: We collected DNA from 14 patients with PAM and four relatives, and analysed the coding regions of SLC34A2 by direct DNA sequencing. To determine the phenotype characteristics, clinical data were collected and a severity score was created for each variant, based on type and localisation within the protein. RESULTS: We identified eight novel allelic variants of SLC34A2 in 14 patients with PAM. Four of these were nonsense variants, three were missense and one was a splice site variant. One patient was heterozygous for two different variants and all other patients were homozygous. Four patients were asymptomatic and 10 patients were symptomatic. The severity of the disease was associated with the variant severity. CONCLUSIONS: Our findings support a significant role for SLC34A2 in PAM and expand the variant spectrum of the disease. Thus, SLC34A2 variants were detected in all patients and eight novel allelic variants were discovered. An association between disease severity and the severity of the variants was found; however, this needs to be investigated in larger patient populations.


Subject(s)
Calcinosis , Lung Diseases , Sodium-Phosphate Cotransporter Proteins, Type IIb , Base Sequence , Genetic Diseases, Inborn , Humans , Lung Diseases/genetics , Pulmonary Alveoli , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...