Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 101(14): 6134-6142, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34402534

ABSTRACT

BACKGROUND: Fresh-cut vegetables are subjected to multiple stressing agents including: (i) slicing, which induces cellular decompartmentalization; (ii) low refrigeration temperatures, responsible for chilling injury in the most sensitive products (e.g. tomatoes), and (iii) storage time because tissue senescence and aging can occur and reduce the shelf-life. In tomato slices, one of the most important issues is the membrane, which is responsible for several disorders related to the alteration of physiological processes, including ethylene biosynthesis. RESULTS: Electrolyte leakage and the content of thiobarbituric acid reactive substances in sliced tomatoes increased over time at two storage temperatures (4 °C and 15 °C) compared with intact fruit for the commercial variety (cultivar) Jama used as reference. However, in the tomato Italian landrace Canestrino, electrolyte leakage in sliced fruits increased after 120 h of storage compared to intact tomatoes, while the thiobarbituric acid reactive substance content increased rapidly over time at both storage temperatures. In the packages, higher ethylene content and carbon dioxide concentrations were detected in sliced tomatoes compared with intact fruits for both genotypes. In the most sensitive genotype for slicing (Jama), phospholipase C activity increased in tomato slices after 24 h of storage, but phospholipase D reached a higher value only at 168 h after processing at 4 °C of storage. CONCLUSIONS: The results evidence that the main damage in slices of full ripe tomatoes is more related to cutting, rather than chilling injury due to storage temperatures, with differences related to the genotype. Slicing enhanced membrane catabolism, ethylene production, and enzyme activity of phospholipases with a significant genotype effect. © 2021 Society of Chemical Industry.


Subject(s)
Cell Membrane/chemistry , Food Handling/methods , Solanum lycopersicum/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Ethylenes/metabolism , Food Storage , Fruit/chemistry , Fruit/genetics , Fruit/metabolism , Genotype , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Temperature
2.
Front Physiol ; 12: 588358, 2021.
Article in English | MEDLINE | ID: mdl-33854438

ABSTRACT

Enhanced mineralocorticoid receptor (MR) signaling is critical to the development of endothelial dysfunction and arterial stiffening. However, there is a lack of knowledge about the role of MR-induced adipose tissue inflammation in the genesis of vascular dysfunction in women. In this study, we hypothesize that MR activation in myeloid cells contributes to angiotensin II (Ang II)-induced aortic stiffening and endothelial dysfunction in females via increased pro-inflammatory (M1) macrophage polarization. Female mice lacking MR in myeloid cells (MyMRKO) were infused with Ang II (500 ng/kg/min) for 4 weeks. This was followed by determinations of aortic stiffness and vasomotor responses, as well as measurements of markers of inflammation and macrophage infiltration/polarization in different adipose tissue compartments. MyMRKO mice were protected against Ang II-induced aortic endothelial stiffening, as assessed via atomic force microscopy in aortic explants, and vasorelaxation dysfunction, as measured by aortic wire myography. In alignment, MyMRKO mice were protected against Ang II-induced macrophage infiltration and M1 polarization in visceral adipose tissue (VAT) and thoracic perivascular adipose tissue (tPVAT). Collectively, this study demonstrates a critical role of MR activation in myeloid cells in the pathogenesis of vascular dysfunction in females associated with pro-inflammatory macrophage polarization in VAT and tPVAT. Our data have potential clinical implications for the prevention and management of cardiovascular disease in women, who are disproportionally at higher risk for poor outcomes.

3.
Endocrinology ; 160(12): 2918-2928, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31617909

ABSTRACT

Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.


Subject(s)
Endothelium, Vascular/physiopathology , Epithelial Sodium Channels/metabolism , Obesity/physiopathology , Sex Characteristics , Vascular Stiffness , Animals , Cells, Cultured , Endothelium, Vascular/metabolism , Female , Male , Mice, Inbred C57BL , Obesity/metabolism
4.
Microbes Environ ; 31(2): 137-44, 2016 Jun 25.
Article in English | MEDLINE | ID: mdl-27297891

ABSTRACT

Buchnera aphidicola is the primary endosymbiont of aphids with which it maintains an obligate mutualistic symbiotic relationship. Insects also maintain facultative symbiotic relationships with secondary symbionts, and Serratia symbiotica is the most common in aphids. The presence of both symbionts in aphids of the subfamily Lachninae has been widely studied by our group. We examined two closely related aphids, Cinara tujafilina and C. cedri in the present study. Even though both B. aphidicola strains have similar genome sizes and gene contents, the genomes of the two S. symbiotica strains were markedly different. The SCc strain has the smallest genome known for this species, while SCt possesses a larger genome in an intermediate stage between the facultative S. symbiotica of Acyrthosiphon pisum (SAp) and the co-obligate S. symbiotica SCc.Aphids are vulnerable to high temperatures. Previous studies indicated that S. symbiotica SAp confers resistance to heat-shock stress. In order to clarify whether S. symbiotica strains from genus Cinara also play a role in heat stress protection, we performed a quantitative determination of the consortium Buchnera/Serratia from two geographically close populations, each of which belonged to the Cinara species examined, over two years in natural environments. We found no variation in the consortium from our C. cedri population, but a positive correlation between both endosymbiont densities and average daily temperatures in the C. tujafilina population. Even though S. symbiotica SCt may retain some protective role against heat stress, this does not appear to be due to the release of protective metabolites by cell lysis.


Subject(s)
Aphids/microbiology , Buchnera/isolation & purification , Buchnera/physiology , Microbial Consortia , Serratia/isolation & purification , Serratia/physiology , Symbiosis , Animals , Aphids/radiation effects , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...