Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37514989

ABSTRACT

Personalized cancer vaccines based on neoantigens are a new and promising treatment for cancer; however, there are still multiple unresolved challenges to using this type of immunotherapy. Among these, the effective identification of immunogenic neoantigens stands out, since the in silico tools used generate a significant portion of false positives. Inclusion of molecular simulation techniques can refine the results these tools produce. In this work, we explored docking and molecular dynamics to study the association between the stability of peptide-HLA complexes and their immunogenicity, using as a proof of concept two HLA-A2-restricted neoantigens that were already evaluated in vitro. The results obtained were in accordance with the in vitro immunogenicity, since the immunogenic neoantigen ASTN1 remained bound at both ends to the HLA-A2 molecule. Additionally, molecular dynamic simulation suggests that position 1 of the peptide has a more relevant role in stabilizing the N-terminus than previously proposed. Likewise, the mutations may have a "delocalized" effect on the peptide-HLA interaction, which means that the mutated amino acid influences the intensity of the interactions of distant amino acids of the peptide with the HLA. These findings allow us to propose the inclusion of molecular simulation techniques to improve the identification of neoantigens for cancer vaccines.

2.
PLoS One ; 18(4): e0277714, 2023.
Article in English | MEDLINE | ID: mdl-37104271

ABSTRACT

The tumor immune infiltrate has an impact on cancer control and progression, additionally a growing body of evidence has proposed the role of neoadjuvant chemotherapy in modulating the contexture of the tumor immune infiltrate. Here, we performed a systematic review to evaluate the effect of chemotherapy in the immune infiltration of breast cancer tumors. We systematically searched Pubmed/MEDLINE, EMBASE, CENTRAL, and BVS databases with a cutoff date of 11/06/2022. Studies in patients with pathological diagnosis of BC, whose first line of treatment was only NAC, were included. Only published experimental studies that measured tumor immune infiltrate before and after NAC by hematoxylin and eosin (H&E) staining, immunohistochemistry (IHQ), or transcriptome were included. Reviews, studies with animal models and in-vitro models were excluded. Studies in which BC was not the primary tumor or studies with patients who received other types of neoadjuvant therapy were also excluded. The NIH quality assessment tool for before and after studies without control was used. We included 32 articles that evaluated the proximal tumor microenvironment before and after neoadjuvant chemotherapy in 2072 patients who received NAC as first line of treatment and who were evaluated for immune infiltrate in the pre- and post-chemotherapy tumor sample. Results were divided into two major categories immune cells and in-situ expression of immune checkpoints and cytokines. Qualitative synthesis was performed with the 32 articles included, and in nine of them a quantitative analysis was achieved, resulting in six meta-analyses. Despite high heterogeneity among the articles regarding treatment received, type of tumor reported, and techniques used to evaluate immune infiltrate, we found a significant decrease of TILs and FoxP3 expression after neoadjuvant chemotherapy. The study protocol was registered in PROSPERO 2021 (Protocol ID: CRD42021243784) on 6/29/2021.


Subject(s)
Mammary Neoplasms, Animal , Neoadjuvant Therapy , Animals , Neoadjuvant Therapy/methods , Lymphocytes, Tumor-Infiltrating , Mammary Neoplasms, Animal/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...