Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Clin Transl Neurol ; 9(12): 1985-1998, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36369764

ABSTRACT

OBJECTIVES: Peripheral neuropathy is a relevant dose-limiting adverse event that can affect up to 90% of oncologic patients with colorectal cancer receiving oxaliplatin treatment. The severity of neurotoxicity often leads to dose reduction or even premature cessation of chemotherapy. Unfortunately, the limited knowledge about the molecular mechanisms related to oxaliplatin neurotoxicity leads to a lack of effective treatments to prevent the development of this clinical condition. In this context, the present work aimed to determine the exact molecular mechanisms involved in the development of oxaliplatin neurotoxicity in a murine model to try to find new therapeutical targets. METHODS: By single-cell RNA sequencing (scRNA-seq), we studied the transcriptomic profile of sensory neurons and satellite glial cells (SGC) of the Dorsal Root Ganglia (DRG) from a well-characterized mouse model of oxaliplatin neurotoxicity. RESULTS: Analysis of scRNA-seq data pointed to modulation of inflammatory processes in response to oxaliplatin treatment. In this line, we observed increased levels of NF-kB p65 protein, pro-inflammatory cytokines, and immune cell infiltration in DRGs and peripheral nerves of oxaliplatin-treated mice, which was accompanied by mechanical allodynia and decrease in sensory nerve amplitudes. INTERPRETATION: Our data show that, in addition to the well-described DNA damage, oxaliplatin neurotoxicity is related to an exacerbated pro-inflammatory response in DRG and peripheral nerves, and open new insights in the development of anti-inflammatory strategies as a treatment for preventing peripheral neuropathy induced by oxaliplatin.


Subject(s)
Antineoplastic Agents , Neurotoxicity Syndromes , Peripheral Nervous System Diseases , Mice , Animals , Oxaliplatin/toxicity , Organoplatinum Compounds/toxicity , Antineoplastic Agents/toxicity , Neurotoxicity Syndromes/etiology , Peripheral Nervous System Diseases/chemically induced , Ganglia, Spinal/metabolism
2.
Cell Death Differ ; 29(10): 2089-2104, 2022 10.
Article in English | MEDLINE | ID: mdl-35473984

ABSTRACT

Glioblastoma (GBM) is the most prevalent malignant primary brain tumour in adults. GBM typically has a poor prognosis, mainly due to a lack of effective treatment options leading to tumour persistence or recurrence. We investigated the therapeutic potential of targeting anti-apoptotic BCL-2 proteins in GBM. Levels of anti-apoptotic BCL-xL and MCL-1 were consistently increased in GBM compared with non-malignant cells and tissue. Moreover, we found that relative to their differentiated counterparts, patient-derived GBM stem-like cells also displayed higher expression of anti-apoptotic BCL-2 family members. High anti-apoptotic BCL-xL and MCL-1 expression correlated with heightened susceptibility of GBM to BCL-2 family protein-targeting BH3-mimetics. This is indicative of increased apoptotic priming. Indeed, GBM displayed an obligate requirement for MCL-1 expression in both tumour development and maintenance. Investigating this apoptotic sensitivity, we found that sequential inhibition of BCL-xL and MCL-1 led to robust anti-tumour responses in vivo, in the absence of overt toxicity. These data demonstrate that BCL-xL and MCL-1 pro-survival function is a fundamental prerequisite for GBM survival that can be therapeutically exploited by BH3-mimetics.


Subject(s)
Glioblastoma , Adult , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Glioblastoma/drug therapy , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein
3.
Cancers (Basel) ; 13(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34771741

ABSTRACT

Glioblastoma (GBM) is a highly aggressive brain tumor and almost all patients die because of relapses. GBM-derived cells undergo cell death without nuclear fragmentation upon treatment with different apoptotic agents. Nuclear dismantling determines the point-of-no-return in the apoptotic process. DFF40/CAD is the main endonuclease implicated in apoptotic nuclear disassembly. To be properly activated, DFF40/CAD should reside in the cytosol. However, the endonuclease is poorly expressed in the cytosol and remains cumulated in the nucleus of GBM cells. Here, by employing commercial and non-commercial patient-derived GBM cells, we demonstrate that the natural terpenoid aldehyde gossypol prompts DFF40/CAD-dependent nuclear fragmentation. A comparative analysis between gossypol- and staurosporine-treated cells evidenced that levels of neither caspase activation nor DNA damage were correlated with the ability of each compound to induce nuclear fragmentation. Deconvoluted confocal images revealed that DFF40/CAD was almost completely excluded from the nucleus early after the staurosporine challenge. However, gossypol-treated cells maintained DFF40/CAD in the nucleus for longer times, shaping a ribbon-like structure piercing the nuclear fragments and building a network of bridged masses of compacted chromatin. Therefore, GBM cells can fragment their nuclei if treated with the adequate insult, making the cell death process irreversible.

4.
Int J Mol Sci ; 22(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810611

ABSTRACT

BACKGROUND: The relevance of the cancer immune cycle in therapy response implies that successful treatment may trigger the exposure or the release of immunogenic signals. Previous results with the preclinical GL261 glioblastoma (GB) showed that combination treatment of temozolomide (TMZ) + CX-4945 (protein kinase CK2 inhibitor) outperformed single treatments, provided an immune-friendly schedule was followed. Our purpose was to study possible immunogenic signals released in vitro by GB cells. METHODS: GL261 GB cells were treated with TMZ and CX-4945 at different concentrations (25 µM-4 mM) and time frames (12-72 h). Cell viability was measured with Trypan Blue and propidium iodide. Calreticulin exposure was assessed with immunofluorescence, and ATP release was measured with bioluminescence. RESULTS: TMZ showed cytostatic rather than cytotoxic effects, while CX-4945 showed remarkable cytotoxic effects already at low concentrations. Calreticulin exposure after 24 h was detected with TMZ treatment, as well as TMZ/CX-4945 low concentration combined treatment. ATP release was significantly higher with CX-4945, especially at high concentrations, as well as with TMZ/CX-4945. CONCLUSIONS: combined treatment may produce the simultaneous release of two potent immunogenic signals, which can explain the outperformance over single treatments in vivo. A word of caution may be raised since in vitro conditions are not able to mimic pharmacokinetics observed in vivo fully.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Naphthyridines/administration & dosage , Phenazines/administration & dosage , Temozolomide/administration & dosage , Adenosine Triphosphate/chemistry , Antineoplastic Agents, Alkylating/administration & dosage , Calreticulin/chemistry , Casein Kinase II/metabolism , Cell Line, Tumor , Cell Survival , Combined Modality Therapy , Humans , Inflammation , Microscopy, Fluorescence , Propidium/chemistry , Signal Transduction , Treatment Outcome
5.
Neuro Oncol ; 18(7): 950-61, 2016 07.
Article in English | MEDLINE | ID: mdl-26755073

ABSTRACT

BACKGROUND: Glioblastoma (GBM) or grade IV astrocytoma is one of the most devastating human cancers. The loss of DFF40/CAD, the key endonuclease that triggers oligonucleosomal DNA fragmentation during apoptosis, has been linked to genomic instability and cell survival after radiation. Despite the near inevitability of GBM tumor recurrence after treatment, the relationship between DFF40/CAD and GBM remains unexplored. METHODS: We studied the apoptotic behavior of human GBM-derived cells after apoptotic insult. We analyzed caspase activation and the protein levels and subcellular localization of DFF40/CAD apoptotic endonuclease. DFF40/CAD was also evaluated in histological sections from astrocytic tumors and nontumoral human brain. RESULTS: We showed that GBM cells undergo incomplete apoptosis without generating oligonucleosomal DNA degradation despite the correct activation of executioner caspases. The major defect of GBM cells relied on the improper accumulation of DFF40/CAD at the nucleoplasmic subcellular compartment. Supporting this finding, DFF40/CAD overexpression allowed GBM cells to display oligonucleosomal DNA degradation after apoptotic challenge. Moreover, the analysis of histological slices from astrocytic tumors showed that DFF40/CAD immunoreactivity in tumoral GFAP-positive cells was markedly reduced when compared with nontumoral samples. CONCLUSIONS: Our data highlight the low expression levels of DFF40/CAD and the absence of DNA laddering as common molecular traits in GBM. These findings could be of major importance for understanding the malignant behavior of remaining tumor cells after radiochemotherapy.


Subject(s)
Apoptosis/genetics , Caspases/metabolism , DNA/metabolism , Deoxyribonucleases/deficiency , Exoribonucleases/genetics , Glioblastoma/enzymology , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , DNA/genetics , Humans , Poly-ADP-Ribose Binding Proteins
6.
J Biol Chem ; 290(34): 20841-20855, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26124276

ABSTRACT

Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as "apoptosis-necrosis continuum." To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Caspases/metabolism , Chromatin/drug effects , Enzyme Inhibitors/pharmacology , Necrosis/enzymology , Amino Acid Chloromethyl Ketones/pharmacology , Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Benzophenanthridines/pharmacology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspases/genetics , Cell Line, Tumor , Chromatin/metabolism , Chromatin/ultrastructure , Colchicine/pharmacology , Enzyme Activation/drug effects , Gene Expression Regulation , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Necrosis/chemically induced , Necrosis/genetics , Neurons , Nocodazole/pharmacology , Peptidomimetics/pharmacology , Quinolines/pharmacology , Rotenone/pharmacology , Signal Transduction , Staurosporine/pharmacology , Thapsigargin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...