Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38592787

ABSTRACT

Plant glutamate receptors (GLRs) are integral membrane proteins that function as non-selective cation channels, involved in the regulation of developmental events crucial in plants. Knowledge of these proteins is restricted to a few species and their true agonists are still unknown in plants. Using tomato SlGLRs, a search was performed in the pepper database to identify GLR sequences in habanero pepper (Capsicum chinense Jacq.). Structural, phylogenetic, and orthology analysis of the CcGLRs, as well as molecular docking and protein interaction networks, were conducted. Seventeen CcGLRs were identified, which contained the characteristic domains of GLR. The variation of conserved residues in the M2 transmembrane domain between members suggests a difference in ion selectivity and/or conduction. Also, new conserved motifs in the ligand-binding regions are reported. Duplication events seem to drive the expansion of the species, and these were located in the evolution by using orthologs. Molecular docking analysis allowed us to identify differences in the agonist binding pocket between CcGLRs, which suggest the existence of different affinities for amino acids. The possible interaction of some CcGLRs with proteins leads to suggesting specific functions for them within the plant. These results offer important functional clues for CcGLR, probably extrapolated to other Solanaceae.

2.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354741

ABSTRACT

Capsaicinoids are responsible for the pungency in Capsicum species. These are synthesized by the Capsaicin synthase (CS) encoded by the AT3 gene, which catalyzes the transference of an acyl moiety from a branched-chain fatty acid-CoA ester to the vanillylamine to produce capsaicinoids. Some AT3 gene copies have been identified on the Capsicum genome. The absence of capsaicinoid in some nonpungent accessions is related to mutant AT3 alleles. The differences between CS protein copies can affect the tridimensional structure of the protein and the affinity for its substrates, and this could affect fruit pungency. This study characterized 32 AT3 sequences covering Capsicum pungent and non-pungent accessions. These were clustered in AT3-D1 and AT3-D2 groups and representative sequences were analyzed. Genomic upstream analysis shows different regulatory elements, mainly responsive to light and abiotic stress. AT3-D1 and AT3-D2 gene expression was confirmed in fruit tissues of C. annuum. Amino acid substitutions close to the predictable HXXXD and DFGWG motifs were also identified. AT3 sequences were modeled showing a BAHD acyltransferase structure with two connected domains. A pocket with different shape, size and composition between AT3 models was found inside the protein, with the conserved motif HXXXD exposed to it, and a channel for their accessibility. CS substrates exhibit high interaction energies with the His and Asp conserved residues. AT3 models have different interaction affinities with the (E)-8-methylnon-6-enoyl-CoA, 8-methylnonanoyl-CoA and vanillylamine substrates. These results suggested that AT3-D1 and AT3-D2 sequences encode CS enzymes with different regulatory factors and substratum affinities.Communicated by Ramaswamy H. Sarma.

3.
Front Plant Sci ; 8: 1767, 2017.
Article in English | MEDLINE | ID: mdl-29075280

ABSTRACT

Aluminum (Al) is the most abundant metal in the earth's crust, but its availability depends on soil pH. Despite this abundance, Al is not considered an essential element and so far no experimental evidence has been put forward for a biological role. In plants and other organisms, Al can have a beneficial or toxic effect, depending on factors such as, metal concentration, the chemical form of Al, growth conditions and plant species. Here we review recent advances in the study of Al in plants at physiological, biochemical and molecular levels, focusing mainly on the beneficial effect of Al in plants (stimulation of root growth, increased nutrient uptake, the increase in enzyme activity, and others). In addition, we discuss the possible mechanisms involved in improving the growth of plants cultivated in soils with acid pH, as well as mechanisms of tolerance to the toxic effect of Al.

4.
Front Plant Sci ; 7: 1980, 2016.
Article in English | MEDLINE | ID: mdl-28083010

ABSTRACT

High-affinity K+ (HAK) transporters are encoded by a large family of genes and are ubiquitous in the plant kingdom. These HAK-type transporters participate in low- and high-affinity potassium (K+) uptake and are crucial for the maintenance of K+ homeostasis under hostile conditions. In this study, the full-length cDNA of CcHAK1 gene was isolated from roots of the habanero pepper (Capsicum chinense). CcHAK1 expression was positively regulated by K+ starvation in roots and was not inhibited in the presence of NaCl. Phylogenetic analysis placed the CcHAK1 transporter in group I of the HAK K+ transporters, showing that it is closely related to Capsicum annuum CaHAK1 and Solanum lycopersicum LeHAK5. Characterization of the protein in a yeast mutant deficient in high-affinity K+ uptake (WΔ3) suggested that CcHAK1 function is associated with high-affinity K+ uptake, with Km and Vmax for Rb of 50 µM and 0.52 nmol mg-1 min-1, respectively. K+ uptake in yeast expressing the CcHAK1 transporter was inhibited by millimolar concentrations of the cations ammonium ([Formula: see text]) and cesium (Cs+) but not by sodium (Na+). The results presented in this study suggest that the CcHAK1 transporter may contribute to the maintenance of K+ homeostasis in root cells in C. chinense plants undergoing K+-deficiency and salt stress.

5.
Funct Plant Biol ; 43(12): 1114-1125, 2016 Dec.
Article in English | MEDLINE | ID: mdl-32480531

ABSTRACT

In this work, we analysed the natural variation in mechanisms for protection against salt stress in pepper varieties (Capsicum chinense Jacq. cv. Rex, Chichen-Itza and Naranja and Capsicum annuum L. cv. Padron), considering primary root growth and viability of the post-stressed seedlings. NaCl-induced K+ and H+ efflux in roots was also studied by ion-selective microelectrodes under application of pharmacological agents. In these pepper varieties, the magnitude of the K+ leakage in the roots positively correlated with growth inhibition of the primary root in the presence of NaCl, with Rex variety showing a higher level of tolerance than Chichen-Itza. The K+ leakage and the activity of the H+ pump in the roots were dependent on the NaCl concentration. Pharmacological analysis indicated that the NaCl-induced K+ leakage was mediated by TEA+-sensitive KOR channels but not by NSCC channels. In addition, we present evidence for the possible participation of proline, and a Na+-insensitive HAK K+ transporter expressed in habanero pepper roots for maintaining K+ homeostasis under salt stress conditions.

6.
Front Plant Sci ; 5: 605, 2014.
Article in English | MEDLINE | ID: mdl-25429292

ABSTRACT

Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

7.
Plant Physiol Biochem ; 49(12): 1456-64, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22078384

ABSTRACT

The effects of nitrate (NO3⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO3⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO3⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO3⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO3⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO3⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO3⁻ in fluctuating soil environments.


Subject(s)
Capsicum/growth & development , Nitrates/metabolism , Plant Roots/growth & development , Soil , Capsicum/metabolism , Environment , Nitrates/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/metabolism , Quaternary Ammonium Compounds/metabolism
8.
Physiol Plant ; 132(4): 399-406, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18333995

ABSTRACT

The ER fraction from red beet taproot was purified on sucrose gradient and giant liposomes, suitable for patch clamping, were formed by dehydration-rehydration of the lipid film. Single-channel recordings on excised and attached patches revealed a large conductance (165 pS) cation (P(Cl-)/P(K+) < 0.03) channel with equal conductance and relative permeability for Na+ and K+. This non-selective cation channel was also highly permeable for Ca2+. We failed to detect any single-channel currents activated by a direct application of d-myo-inositol 1,4,5 trisphosphate, despite the fact that the ER membranes were native.


Subject(s)
Beta vulgaris/metabolism , Endoplasmic Reticulum/physiology , Ion Channels/physiology , Patch-Clamp Techniques , Plant Roots/metabolism , Cations , Ion Channels/isolation & purification , Liposomes
9.
Mol Biotechnol ; 35(3): 297-309, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17652793

ABSTRACT

We have previously reported that Catharanthus roseus transformed roots contain at least two phosphatidylinositol 4,5-bisphosphate-phospholipase C (PLC) activities, one soluble and the other membrane associated. Detergent, divalent cations, and neomycin differentially regulate these activities and pure protein is required for a greater understanding of the function and regulation of this enzyme. In this article we report a partia purification of membrane-associated PLC. We found that there are at least two forms of membraneassociated PLC in transformed roots of C. roseus. These forms were separated on the basis of their affinity for heparin. One form shows an affinity for heparin and elutes at approx 600 mM KCl. This form has a molecular mass of 67 kDa by size exclusion chromatography and Western blot analysis, whereas the other form does not bind to heparin and has a molecular mass of 57 kDa. Possible differential regulation of these forms during transformed root growth is discussed.


Subject(s)
Phosphatidylinositol Diacylglycerol-Lyase/metabolism , Plant Roots/enzymology , Blotting, Western , Catharanthus/enzymology , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Phosphatidylinositol Diacylglycerol-Lyase/isolation & purification
10.
J Inorg Biochem ; 101(2): 362-9, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17161461

ABSTRACT

Coffee (Coffea arabica L.) is of economic importance worldwide. Its growth in organic-rich acidic soils is influenced by aluminium such that coffee yield may be impaired. Herein we have used the Al-sensitive C. arabica suspension cell line L2 to analyse the effect of two different Al species on the phosphoinositide signal transduction pathway. Our results have shown that the association of Al with coffee cells was affected by the pH and the form of Al in media. More Al was associated with cells at pH 4.3 than 5.8, whereas when Al was present as hydroxyaluminosilicates (HAS) the association was halved at pH 4.3 and unchanged at pH 5.8. Two signal transduction elements were also evaluated; phospholipase C (PLC) activity and phosphatidic acid (PA) formation. PLC was inhibited ( approximately 50%) when cells were incubated for 2 h in the presence of either AlCl(3) or Al in the form of HAS. PA formation was tested as a short-term response to Al. By way of contrast to what was found for PLC, incubation of cells for 15 min in the presence of AlCl(3) decreased the formation of PA whereas the same concentration of Al as HAS produced no effect upon its formation. These results suggest that Al is capable to exert its effects upon signal transduction as Al((aq))(3+) acting upon a mechanism linked to the phosphoinositide signal transduction pathway.


Subject(s)
Aluminum/antagonists & inhibitors , Aluminum/toxicity , Coffea/drug effects , Coffea/metabolism , Phospholipids/metabolism , Silicic Acid/pharmacology , Cell Line , Hydrogen-Ion Concentration , Inositol 1,4,5-Trisphosphate/metabolism , Phosphatidic Acids/metabolism , Signal Transduction/drug effects , Type C Phospholipases/metabolism
11.
Planta ; 219(6): 1057-70, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15605179

ABSTRACT

The non-selective slow vacuolar (SV) channel can dominate tonoplast conductance, making it necessary to tightly control its activity. Applying the patch-clamp technique to vacuoles from sugar beet (Beta vulgaris L.) taproots we studied the effect of divalent cations on the vacuolar side of the SV channel. Our results show that the SV channel has two independent binding sites for vacuolar divalent cations, (i) a less selective one, inside the channel pore, binding to which impedes channel conductance, and (ii) a Ca(2+)-selective one outside the membrane-spanning part of the channel protein, binding to which stabilizes the channel's closed conformations. Vacuolar Ca2+ and Mg2+ almost indiscriminately blocked ion fluxes through the open channel pore, decreasing measured single-channel current amplitudes. This low-affinity block displays marked voltage dependence, characteristic of a 'permeable blocker'. Vacuolar Ca(2+)-with a much higher affinity than Mg(2+)-slows down SV channel activation and shifts the voltage dependence to more (cytosol) positive potentials. A quantitative analysis results in a model that exactly describes the Ca(2+)-specific effects on the SV channel activation kinetics and voltage gating. According to this model, multiple (approximately three) divalent cations bind with a high affinity at the luminal interface of the membrane to the channel protein, favoring the occupancy of one of the SV channel's closed states (C2). Transition to another closed state (C1) diminishes the effective number of bound cations, probably due to mutual repulsion, and channel opening is accompanied by a decrease of binding affinity. Hence, the open state (O) is destabilized with respect to the two closed states, C1 and C2, in the presence of Ca2+ at the vacuolar side. The specificity for Ca2+ compared to Mg2+ is explained in terms of different binding affinities for these cations. In this study we demonstrate that vacuolar Ca2+ is a crucial regulator to restrict SV channel activity to a physiologically meaningful range, which is less than 0.1% of maximum SV channel activity.


Subject(s)
Beta vulgaris/metabolism , Calcium/physiology , Ion Channels/metabolism , Magnesium/physiology , Vacuoles/metabolism , Beta vulgaris/ultrastructure , Calcium/metabolism , Electrophysiology , Ion Channel Gating/physiology , Kinetics , Magnesium/metabolism , Models, Biological , Patch-Clamp Techniques
12.
J Plant Physiol ; 160(11): 1297-303, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14658381

ABSTRACT

The effect of aluminium (Al) on phosphoinositide-specific phospholipase C (PLC) and lipid kinase activities was examined in a cellular suspension of coffee. Two main effects were seen when cells were treated with AlCl3. In periods as short as 1 minute, Al-exposed cells increased the activity of PLC and IP3 formation up to two fold. Over longer periods PLC activity was inhibited by more than 50%. The activity of phosphatidylinositol 4-kinase (Pl 4-K), phosphatidylinositol phosphate 5-kinase (PIP 5-K) and diacylglycerol kinase increased when cells were incubated in the presence of different concentrations of AlCl3. The present study reports for the first time that Al may have different effects on the Pl-signaling pathway depending on the time of exposure. Our results strongly support the hypothesis that Al disrupts the metabolism of membrane phospholipids regulating not only PLC but also other enzymes that have key roles in signal-transduction pathways.


Subject(s)
Aluminum Compounds/pharmacology , Chlorides/pharmacology , Coffea/metabolism , Lipid Metabolism , Phosphatidylinositols/metabolism , 1-Phosphatidylinositol 4-Kinase/metabolism , Aluminum Chloride , Cells, Cultured , Coffea/cytology , Coffea/drug effects , Diacylglycerol Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction/drug effects , Time Factors , Type C Phospholipases/metabolism
13.
J Inorg Biochem ; 97(1): 69-78, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-14507462

ABSTRACT

An aluminium (Al)-tolerant cell line (LAMt) of coffee (Coffea arabica L.) was obtained from a cell suspension culture and biochemically and molecularly characterized in an MS medium at half ionic strength and low pH. LAMt grew 30% more than the control line (susceptible to Al) in the presence of different concentrations of Al, showed a lower free Al concentration in the medium and had higher phospholipase C specific activity (80%). Membrane integrity of the LAMt was 50% greater than the control line when both were incubated in the presence of different Al concentrations (measured by Evans Blue uptake). Finally, the use of microsatellite primers revealed no difference in the DNA pattern of both cell lines.


Subject(s)
Aluminum/metabolism , Aluminum/toxicity , Coffee/cytology , Coffee/drug effects , Coffee/metabolism , Adaptation, Physiological/drug effects , Adaptation, Physiological/physiology , Alleles , Aluminum/analysis , Aluminum/chemistry , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Coffee/genetics , DNA Primers/genetics , Fluorescence , Hydrogen-Ion Concentration , Microsatellite Repeats/genetics , Osmolar Concentration , Spectrophotometry, Atomic , Type C Phospholipases/metabolism
14.
J Exp Bot ; 54(383): 663-7, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12554709

ABSTRACT

In higher plants the vacuolar K(+)-selective (VK) channel was identified solely in guard cells. This patch-clamp study describes a 40 pS homologue of the VK channel in Beta vulgaris taproot vacuoles. This voltage-independent channel is activated by submicromolar Ca(2+), and is ideally selective for K(+) over Cl(-) and Na(+).


Subject(s)
Beta vulgaris/metabolism , Intracellular Membranes/metabolism , Potassium Channels/physiology , Vacuoles/metabolism , Calcium/pharmacology , Chlorides/metabolism , Intracellular Membranes/drug effects , Membrane Potentials/drug effects , Patch-Clamp Techniques , Potassium/metabolism , Sodium/metabolism , Vacuoles/drug effects
15.
Biophys J ; 84(2 Pt 1): 977-86, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12547779

ABSTRACT

At resting cytosolic Ca(2)(+), passive K(+) conductance of a higher plant tonoplast is likely dominated by fast vacuolar (FV) channels. This patch-clamp study describes K(+)-sensing behavior of FV channels in Beta vulgaris taproot vacuoles. Variation of K(+) between 10 and 400 mM had little effect on the FV channel conductance, but a pronounced one on the open probability. Shift of the voltage dependence by cytosolic K(+) could be explained by screening of the negative surface charge with a density sigma = 0.25 e(-)/nm(2). Vacuolar K(+) had a specific effect on the FV channel gating at negative potentials without significant effect on closed-open transitions at positive ones. Due to K(+) effects at either membrane side, the potential at which the FV channel has minimal activity was always situated at approximately 50 mV below the potassium equilibrium potential, E(K(+)). At tonoplast potentials below or equal to E(K(+)), the FV channel open probability was almost independent on the cytosolic K(+) but varied in a proportion to the vacuolar K(+). Therefore, the release of K(+) from the vacuole via FV channels could be controlled by the vacuolar K(+) in a feedback manner; the more K(+) is lost the lower will be the transport rate.


Subject(s)
Beta vulgaris/drug effects , Beta vulgaris/physiology , Ion Channels/drug effects , Ion Channels/physiology , Potassium/pharmacology , Cells, Cultured , Cytosol/physiology , Dose-Response Relationship, Drug , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Plant Roots/drug effects , Plant Roots/physiology , Sensitivity and Specificity , Vacuoles/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...