Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498845

ABSTRACT

Inflammasome activation is one of the first steps in initiating innate immune responses. In this work, we studied the activation of inflammasomes in the airways of critically ill COVID-19 patients and the effects of N-acetylcysteine (NAC) on inflammasomes. Tracheal biopsies were obtained from critically ill patients without COVID-19 and no respiratory disease (control, n = 32), SARS-CoV-2 B.1 variant (n = 31), and B.1.1.7 VOC alpha variant (n = 20) patients. Gene expression and protein expression were measured by RT-qPCR and immunohistochemistry. Macrophages and bronchial epithelial cells were stimulated with different S, E, M, and N SARS-CoV-2 recombinant proteins in the presence or absence of NAC. NLRP3 inflammasome complex was over-expressed and activated in the COVID-19 B.1.1.7 VOC variant and associated with systemic inflammation and 28-day mortality. TLR2/MyD88 and redox NOX4/Nrf2 ratio were also over-expressed in the COVID-19 B.1.1.7 VOC variant. The combination of S-E-M SARS-CoV-2 recombinant proteins increased cytokine release in macrophages and bronchial epithelial cells through the activation of TLR2. NAC inhibited SARS-CoV-2 mosaic (S-E-M)-induced cytokine release and inflammasome activation. In summary, inflammasome is over-activated in severe COVID-19 and increased in B.1.1.7 VOC variant. In addition, NAC can reduce inflammasome activation induced by SARS-CoV-2 in vitro, which may be of potential translational value in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Inflammasomes/metabolism , Acetylcysteine/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cytokines , Recombinant Proteins/pharmacology
2.
Physiol Behav ; 151: 456-62, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26222614

ABSTRACT

Since the pathogenesis of fibromyalgia is unknown, treatment options are limited, ineffective and in fact based on symptom relief. A recently proposed rat model of fibromyalgia is based on central depletion of monamines caused by reserpine administration. This model showed widespread musculoskeletal pain and depressive-like symptoms, but the methodology used to measure such symptoms has been criticized. Evidence relates the high prevalence of pain and depression in fibromyalgia to common pathogenic pathways, most probably focused on the monoaminergic system. The present study aims at a validation of the reserpine model of fibromyalgia. For this purpose, rats undergoing this model have been tested for depressive-like symptoms with a Novelty-Suppressed Feeding Test adaptation. Animals administered with reserpine and subjected to forced food deprivation performed a smaller number of incursions to the center of the open field, evidenced by a decrease in the per-minute rate of the rats' approaching, smelling or touching the food. They also took more time to eat from the central food than control rats. These NSFT findings suggest the presence of depressive-like disorders in this animal model of fibromyalgia.


Subject(s)
Adrenergic Uptake Inhibitors/toxicity , Depression/etiology , Fibromyalgia/chemically induced , Fibromyalgia/complications , Reserpine/toxicity , Animals , Disease Models, Animal , Exploratory Behavior/drug effects , Feeding Behavior/drug effects , Hindlimb Suspension , Inhibition, Psychological , Male , Motor Activity/drug effects , Pain Threshold/drug effects , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...