Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 20(1): 1016, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31878883

ABSTRACT

BACKGROUND: White root rot disease caused by Rosellinia necatrix is one of the most important threats affecting avocado productivity in tropical and subtropical climates. Control of this disease is complex and nowadays, lies in the use of physical and chemical methods, although none have proven to be fully effective. Detailed understanding of the molecular mechanisms underlying white root rot disease has the potential of aiding future developments in disease resistance and management. In this regard, this study used RNA-Seq technology to compare the transcriptomic profiles of R. necatrix during infection of susceptible avocado 'Dusa' roots with that obtained from the fungus cultured in rich medium. RESULTS: The transcriptomes from three biological replicates of R. necatrix colonizing avocado roots (RGA) and R. necatrix growing on potato dextrose agar media (RGPDA) were analyzed using Illumina sequencing. A total of 12,104 transcripts were obtained, among which 1937 were differentially expressed genes (DEG), 137 exclusively expressed in RGA and 160 in RGPDA. During the root infection process, genes involved in the production of fungal toxins, detoxification and transport of toxic compounds, hormone biosynthesis, gene silencing and plant cell wall degradation were overexpressed. Interestingly, 24 out of the 137 contigs expressed only during R. necatrix growth on avocado roots, were predicted as candidate effector proteins (CEP) with a probability above 60%. The PHI (Pathogen Host Interaction) database revealed that three of the R. necatrix CEP showed homology with previously annotated effectors, already proven experimentally via pathogen-host interaction. CONCLUSIONS: The analysis of the full-length transcriptome of R. necatrix during the infection process is suggesting that the success of this fungus to infect roots of diverse crops might be attributed to the production of different compounds which, singly or in combination, interfere with defense or signaling mechanisms shared among distinct plant families. The transcriptome analysis of R. necatrix during the infection process provides useful information and facilitates further research to a more in -depth understanding of the biology and virulence of this emergent pathogen. In turn, this will make possible to evolve novel strategies for white root rot management in avocado.


Subject(s)
Gene Expression Profiling , Genetic Predisposition to Disease/genetics , Persea/microbiology , Plant Diseases/microbiology , Plant Roots/microbiology , Xylariales/genetics , Xylariales/physiology , Molecular Sequence Annotation , RNA-Seq
2.
BMC Plant Biol ; 19(1): 458, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31664901

ABSTRACT

BACKGROUND: White root rot (WRR) disease caused by Rosellinia necatrix is one of the most important threats affecting avocado orchards in temperate regions. The eradication of WRR is a difficult task and environmentally friendly control methods are needed to lessen its impact. Priming plants with a stressor (biotic or abiotic) can be a strategy to enhance plant defense/tolerance against future stress episodes but, despite the known underlying common mechanisms, few studies use abiotic-priming for improving tolerance to forthcoming biotic-stress and vice versa ('cross-factor priming'). To assess whether cross-factor priming can be a potential method for enhancing avocado tolerance to WRR disease, 'Dusa' avocado rootstocks, susceptible to R. necatrix, were subjected to two levels of water stress (mild-WS and severe-WS) and, after drought-recovery, inoculated with R. necatrix. Physiological response and expression of plant defense related genes after drought-priming as well as the disease progression were evaluated. RESULTS: Water-stressed avocado plants showed lower water potential and stomatal limitations of photosynthesis compared to control plants. In addition, NPQ and qN values increased, indicating the activation of energy dissipating mechanisms closely related to the relief of oxidative stress. This response was proportional to the severity of the water stress and was accompanied by the deregulation of pathogen defense-related genes in the roots. After re-watering, leaf photosynthesis and plant water status recovered rapidly in both treatments, but roots of mild-WS primed plants showed a higher number of overexpressed genes related with plant defense than severe-WS primed plants. Disease progression after inoculating primed plants with R. necatrix was significantly delayed in mild-WS primed plants. CONCLUSIONS: These findings demonstrate that mild-WS can induce a primed state in the WRR susceptible avocado rootstock 'Dusa' and reveal that 'cross-factor priming' with water stress (abiotic stressor) is effective for increasing avocado tolerance against R. necatrix (biotic stressor), underpinning that plant responses against biotic and abiotic stress rely on common mechanisms. Potential applications of these results may involve an enhancement of WRR tolerance of current avocado groves and optimization of water use via low frequency deficit irrigation strategies.


Subject(s)
Ascomycota/physiology , Droughts , Gene Expression , Genes, Plant , Persea/physiology , Plant Diseases/microbiology , Disease Resistance/physiology , Persea/microbiology , Plant Roots/microbiology , Plant Roots/physiology , Stress, Physiological/genetics
3.
Plant Dis ; 100(1): 49-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-30688585

ABSTRACT

White root rot (WRR) disease caused by Rosellinia necatrix is one of the most important threats affecting avocado orchards in temperate regions. In this study, we monitored the progression of WRR disease at the leaf and root levels by the combination of nondestructive chlorophyll fluorescence measurements and confocal laser-scanning microscopy on avocado genotypes susceptible to R. necatrix. Leaf photochemistry was affected at early stages of disease development prior to the appearance of aboveground symptoms, made evident as significant decreases in the trapping efficiency of photosystem-II (Fv'/Fm') and in the steady-state of chlorophyll fluorescence yield (Fs) normalized to the minimal fluorescence yield (F0) (Fs/F0). Decreases in Fv'/Fm' and Fs/F0 were associated with different degrees of fungal penetration, primarily in the lateral roots but not in areas next to the main root collar. Aboveground symptoms were observed only when the fungus reached the root collar. Leaf physiology was also tracked in a tolerant genotype where no changes were observed during disease progression despite the presence of the fungus in the root system. These results highlight the usefulness of this technique for the early detection of fungal infection and the rapid removal of highly susceptible genotypes in rootstock avocado-breeding programs.

4.
Environ Entomol ; 37(6): 1531-7, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19161697

ABSTRACT

We evaluated the influence of six different citrus rootstocks on the incidence of the citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), and the aphid species, Aphis gossypii Glover and A. spiraecola Patch (Hemiptera: Aphididae), on 'Clementine de Nules' trees (Citrus clementina Hort. ex Tan.). Sampling was conducted during 2005 and 2006 in a grove of 3-yr-old trees in southern Spain with six rootstocks arranged in a completely randomized block design. Incidence (i.e., degree of infestation) and availability of resources for herbivores were assessed bi-weekly, and in addition, a "flushing index" was estimated as the number of young shoots (as a percentage of total shoots) susceptible to herbivore injury. Our results showed that contrasting factors affected the incidence of populations of P. citrella, A. gossypii, and A. spiraecola on 'Clementine de Nules'. Incidence of P. citrella was significantly dependent on the flushing pattern observed throughout the study, whereas the reverse was true for the aphid species. Among these, A. spiraecola had similar levels of incidence regardless of rootstock, whereas A. gossypii were found almost exclusively on leaves of 'Clementine de Nules' grafted on 'Cleopatra mandarin' (Citrus reshni Hort. ex Tan). Potential implications of these results on pest control are discussed.


Subject(s)
Aphids/physiology , Citrus/parasitology , Host-Parasite Interactions , Moths/physiology , Animals , Citrus/growth & development , Plant Leaves/growth & development , Plant Roots
5.
Tree Physiol ; 24(9): 981-90, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15234895

ABSTRACT

Photoinhibition was examined in four co-occurring Mediterranean evergreen tree species during two consecutive winters. In response to low temperatures and saturating light, Juniperus phoenicea L., Pinus halepensis Mill., Quercus coccifera L. and Q. ilex ssp. ballota (Desf.) Samp. exhibited marked chronic photoinhibition, indicated by low predawn maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm). Low Fv/Fm values were correlated with high concentrations of xanthophyll cycle components (VAZ) and with the maintenance of high concentrations of zeaxanthin overnight (DPSpd). In all species, however, chronic photoinhibition was enhanced as the winter progressed in the absence of changes in DPSpd, suggesting cumulative damage toward the end of winter. Photoinhibition differed among species: P. halepensis always displayed significantly higher Fv/Fm values; and Q. coccifera had the lowest Fv/Fm values, showing a high sensitivity to the combination of high light and low temperatures. Differences among species were not fully explained by differences in the xanthophyll pool or its de-epoxidation state. Chronic photoinhibition overlapped with a dynamic photoinhibition as shown by the low values of photochemical efficiency of the open reaction centers of PSII at midday. Winter photoprotective strategies differed among species and may involve photoprotective mechanisms in addition to those associated with xanthophylls. The observed species-specific differences matched results obtained for the same species in summer; however, comparison of the two seasons suggests that the higher VAZ concentration observed in winter has an additional structural photoprotective role.


Subject(s)
Trees/physiology , Chlorophyll/physiology , Juniperus/physiology , Pinus/physiology , Plant Leaves/physiology , Quercus/physiology , Seasons , Sunlight
6.
Tree Physiol ; 20(2): 131-138, 2000 Jan.
Article in English | MEDLINE | ID: mdl-12651481

ABSTRACT

Photosynthetic performance was monitored during two consecutive summers in four co-occurring evergreen Mediterranean tree species growing on a south-facing rocky slope. In response to midday water stress, the drought-avoiding species Pinus halepensis Mill. exhibited marked stomatal closure (g(s)) but no changes in stem water potential (Psi(s)), whereas the drought-tolerant species Quercus coccifera L., Q. ilex ssp. ballota (Desf.) Samp. and Juniperus phoenicea L. displayed declines in midday g(s) and Psi(s). The higher resistance to CO(2) influx in needles of P. halepensis compared with the other species did not result in either a proportional increase in non-radiative dissipation of excess energy or photo-inactivation of photosystem II (PSII). No significant differences were found among species either in the de-epoxidation state of the xanthophyll cycle (DPS) or in the pool of its components on a total chlorophyll basis (VAZ). Despite contrasting midday assimilation rates, the three drought-tolerant species all exhibited a pronounced drop in photochemical efficiency at midday that was characterized by a decrease in the excitation capture efficiency of the open PSII centers. Although photoinhibition was not fully reversed before dawn, it apparently did not result in cumulative photo-damage. Thus, the drought-avoiding and drought-tolerant species employed different mechanisms for coping with excess light during the midday depression in photosynthesis that involved contrasting midday photochemical efficiencies of PSII and different degrees of dynamic photoinhibition as a photo-protective mechanism. These behaviors may be related to the different mechanisms employed by drought-avoiding and drought-tolerant species to withstand water deficit.

SELECTION OF CITATIONS
SEARCH DETAIL
...