Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Clin Immunol ; 264: 110267, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825071

ABSTRACT

Long-COVID (LC) is characterised by persistent symptoms for at least 3 months after acute infection. A dysregulation of the immune system and a persistent hyperinflammatory state may cause LC. LC patients present differences in activation and exhaustion states of innate and adaptive compartments. Different T CD4+ cell subsets can be identified by differential expression of chemokine receptors (CCR). However, changes in T cells with expression of CCRs such as CCR6 and CXCR3 and their relationship with CD8+ T cells remains unexplored in LC. Here, we performed unsupervised analysis and found CCR6+ CD4+ subpopulations enriched in COVID-19 convalescent individuals upon activation with SARS-CoV-2 peptides. SARS-CoV-2 specific CCR6+ CD4+ are decreased in LC patients, whereas CXCR3+ CCR6- and CCR4+ CCR6- CD4+ T cells are increased. LC patients showed lower IFN-γ-secreting CD8+ T cells after stimulation with SARS-CoV-2 Spike protein. This work underscores the role of CCR6 in the pathophysiology of LC.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 , Interferon-gamma , Receptors, CCR6 , Receptors, CXCR3 , SARS-CoV-2 , Humans , Receptors, CCR6/immunology , Receptors, CCR6/metabolism , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , CD4-Positive T-Lymphocytes/immunology , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , SARS-CoV-2/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Male , Female , Middle Aged , Aged , Adult
2.
Nat Commun ; 15(1): 2100, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453949

ABSTRACT

Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.


Subject(s)
COVID-19 , Inflammasomes , Humans , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , COVID-19/pathology , Inflammasomes/metabolism , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleoproteins/metabolism , SARS-CoV-2/metabolism
3.
NPJ Vaccines ; 9(1): 21, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291047

ABSTRACT

B and T cell responses were evaluated in patients with rheumatoid arthritis (RA) or psoriatic arthritis (PsA) after 1 or 2 weeks of methotrexate (MTX) withdrawal following each COVID-19 vaccine dose and compared with those who maintained MTX. Adult RA and PsA patients treated with MTX were recruited and randomly assigned to 3 groups: MTX-maintenance (n = 72), MTX-withdrawal for 1 week (n = 71) or MTX-withdrawal for 2 weeks (n = 73). Specific antibodies to several SARS-CoV-2 antigens and interferon (IFN)-γ and interleukin (IL)-21 responses were assessed. MTX withdrawal in patients without previous COVID-19 was associated with higher levels of anti-RBD IgG and neutralising antibodies, especially in the 2-week withdrawal group and with higher IFN-γ secretion upon stimulation with pools of SARS-CoV-2 S peptides. No increment of RA/PsA relapses was detected across groups. Our data indicate that two-week MTX interruption following COVID-19 vaccination in patients with RA or PsA improves humoral and cellular immune responses.

4.
Vaccines (Basel) ; 11(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38140217

ABSTRACT

The COVID-19 vaccination program has probably been the most complex and extensive project in history until now, which has been a challenge for all the people involved in the planning and management of this program. Patients with immune-mediated inflammatory diseases (IMIDs) on immunosuppressive therapy have required special attention, not only because of the particular haste in carrying out the process but also because of the uncertainty regarding their response to the vaccines. We now have strong scientific evidence that supports the hypothesis that immunosuppressive therapy inhibits the humoral response to vaccines against other infectious agents, such as influenza, pneumococcus and hepatitis B. This has led to the hypothesis that the same could happen with the COVID-19 vaccine. Several studies have therefore already been carried out in this area, suggesting that temporarily discontinuing the administration of methotrexate for 2 weeks post-vaccination could improve the vaccine response, and other studies with various immunosuppressive drugs are in the same line. However, the fact of withholding or interrupting immunosuppressive therapy when dealing with COVID-19 vaccination remains unclear. On this basis, our article tries to compile the information available on the effect of immunosuppressant agents on COVID-19 vaccine responses in patients with IMIDs and proposes an algorithm for the management of these patients.

5.
Clin Immunol ; 256: 109806, 2023 11.
Article in English | MEDLINE | ID: mdl-37827267

ABSTRACT

The study of phenotypic and functional characteristics of immune cells involved in host response to SARS-CoV-2 is relevant for understanding COVID-19 pathogenesis and individual differences in disease progression. We have analyzed chemokine receptor expression in SARS-CoV-2-specific CD4+ T lymphocytes from vaccinated donors, and have found an increase of CCR9+ and CCR6+ cells. CCR9+ specific CD4+ cells are enriched in T regulatory (Treg) lymphocytes. These cells specifically show heterogeneous regulatory activity, associated with different profiles of CCR9/CCR6 expression, individual differences in IL-10 and IL-17 production, and variable FoxP3 and Notch4 expression. A higher heterogeneity in FoxP3 is selectively observed in convalescent individuals within vaccinated population. Accordingly, SARS-CoV-2-specific CD4+ lymphocytes from COVID-19 patients are also enriched in CCR9+ and CCR6+ cells. CCR6+ specific Treg lymphocytes are mainly increased in critically ill individuals, indicating a preferential role for these cells in lung injury pathogenesis. We provide experimental evidence for a SARS-CoV-2-specific Treg population with increased plasticity, which may contribute to the differential pathogenic response against SARS-CoV-2 among individuals, and underlie the development of autoimmune conditions following SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , CD4-Positive T-Lymphocytes , Receptors, Chemokine/metabolism , Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory
6.
EBioMedicine ; 81: 104090, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35665682

ABSTRACT

BACKGROUND: Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. METHODS: We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. FINDINGS: HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1- cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. INTERPRETATION: Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines. FUNDING: NIH (R21AI140930), MINECO/FEDER RETOS (RTI2018-097485-A-I00) and CIBERINF grants.


Subject(s)
HIV Infections , HIV-1 , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Dendritic Cells , HIV Infections/drug therapy , Humans
7.
J Leukoc Biol ; 112(2): 339-346, 2022 08.
Article in English | MEDLINE | ID: mdl-35384035

ABSTRACT

Multiple questions about SARS-CoV-2 humoral and cellular immunity remain unanswered. One key question is whether preexisting memory T or B cells, specific for related coronaviruses in SARS-CoV-2-unexposed individuals, can recognize and suppress COVID-19, but this issue remains unclear. Here, we demonstrate that antibody responses to SARS-CoV-2 antigens are restricted to serum samples from COVID-19 convalescent individuals. In contrast, cross-reactive T cell proliferation and IFN-γ production responses were detected in PBMCs of around 30% of donor samples collected prepandemic, although we found that these prepandemic T cell responses only elicited weak cTFH activation upon stimulation with either HCoV-OC43 or SARS-CoV-2 NP protein. Overall, these observations confirm that T cell cross-reactive with SARS-CoV-2 antigens are present in unexposed people, but suggest that the T cell response to HCoV-OC43 could be deficient in some important aspects, like TFH expansion, that might compromise the generation of cross-reactive TFH cells and antibodies. Understanding these differences in cellular responses may be of critical importance to advance in our knowledge of immunity against SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Antibodies, Viral , Cross Reactions , Humans , Immunity, Humoral , SARS-CoV-2
8.
Eur J Immunol ; 51(11): 2633-2640, 2021 11.
Article in English | MEDLINE | ID: mdl-34358329

ABSTRACT

Here, we describe a new, simple, highly multiplexed serological test that generates a more complete picture of seroconversion than single antigen-based assays. Flow cytometry is used to detect multiple Ig isotypes binding to four SARS-CoV-2 antigens: the Spike glycoprotein, its RBD fragment (the main target for neutralizing antibodies), the nucleocapsid protein, and the main cysteine-like protease in a single reaction. Until now, most diagnostic serological tests measured antibodies to only one antigen and in some laboratory-confirmed patients no SARS-CoV-2-specific antibodies could be detected. Our data reveal that while most patients respond against all the viral antigens tested, others show a marked bias to make antibodies against either proteins exposed on the viral particle or those released after cellular infection. With this assay, it was possible to discriminate between patients and healthy controls with 100% confidence. Analysing the response of multiple Ig isotypes to the four antigens in combination may also help to establish a correlation with the severity degree of disease. A more detailed description of the immune responses of different patients to SARS-CoV-2 virus might provide insight into the wide array of clinical presentations of COVID-19.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Flow Cytometry/methods , Antigens, Viral/immunology , COVID-19/immunology , High-Throughput Screening Assays , Humans , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests
9.
Sci Rep ; 11(1): 14579, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272424

ABSTRACT

The interplay between T cells, dendritic cells and keratinocytes is crucial for the development and maintenance of inflammation in psoriasis. GADD45 proteins mediate DNA repair in different cells including keratinocytes. In the immune system, GADD45a and GADD45b regulate the function and activation of both T lymphocytes and dendritic cells and GADD45a links DNA repair and epigenetic regulation through its demethylase activity. Here, we analyzed the expression of GADD45a and GADD45b in the skin, dendritic cells and circulating T cells in a cohort of psoriasis patients and their regulation by inflammatory signals. Thirty patients (17 male/13 female) with plaque psoriasis and 15 controls subjects (7 male/8 female), were enrolled. Psoriasis patients exhibited a lower expression of GADD45a at the epidermis but a higher expression in dermal infiltrating T cells in lesional skin. The expression of GADD45a and GADD45b was also higher in peripheral T cells from psoriasis patients, although no differences were observed in p38 activation. The expression and methylation state of the GADD45a target UCHL1 were evaluated, revealing a hypermethylation of its promoter in lesional skin compared to controls. Furthermore, reduced levels of GADD45a correlated with a lower expression UCHL1 in lesional skin. We propose that the demethylase function of GADD45a may account for its pleiotropic effects, and the complex and heterogeneous pattern of expression observed in psoriatic disease.


Subject(s)
Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , Cell Cycle Proteins/immunology , Cell Cycle Proteins/metabolism , Psoriasis/immunology , Psoriasis/metabolism , Adult , Aged , Aged, 80 and over , Antigens, Differentiation/genetics , Apoptosis , Cell Cycle Proteins/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epigenesis, Genetic , Female , Humans , Inflammation/immunology , Inflammation/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Male , Methylation , Middle Aged , Psoriasis/genetics , Skin/immunology , Skin/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Ubiquitin Thiolesterase/metabolism
10.
EMBO Mol Med ; 13(3): e13549, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33471406

ABSTRACT

A correct identification of seropositive individuals for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is of paramount relevance to assess the degree of protection of a human population to present and future outbreaks of the COVID-19 pandemic. We describe here a sensitive and quantitative flow cytometry method using the cytometer-friendly non-adherent Jurkat T-cell line that stably expresses the full-length native spike "S" protein of SARS-CoV-2 and a truncated form of the human EGFR that serves a normalizing role. S protein and huEGFRt coding sequences are separated by a T2A self-cleaving sequence, allowing to accurately quantify the presence of anti-S immunoglobulins by calculating a score based on the ratio of fluorescence intensities obtained by double-staining with the test sera and anti-EGFR. The method allows to detect immune individuals regardless of the result of other serological tests or even repeated PCR monitoring. As examples of its use, we show that as much as 28% of the personnel working at the CBMSO in Madrid is already immune. Additionally, we show that anti-S antibodies with protective neutralizing activity are long-lasting and can be detected in sera 8 months after infection.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/immunology , Flow Cytometry/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19/virology , COVID-19 Serological Testing/statistics & numerical data , Enzyme-Linked Immunosorbent Assay , ErbB Receptors/genetics , Female , Flow Cytometry/statistics & numerical data , Hep G2 Cells , Humans , Jurkat Cells , Male , Middle Aged , Neutralization Tests , Pandemics , Polymerase Chain Reaction , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
11.
Front Immunol ; 12: 755891, 2021.
Article in English | MEDLINE | ID: mdl-35126347

ABSTRACT

The immune response promoted by SARS-CoV-2 vaccination is relevant to develop novel vaccines and optimized prevention strategies. We analyzed the adaptive immunity in healthy donors (HD) and convalescent individuals (CD), before and after administering BNT162b2 vaccine. Our results revealed specific changes in CD4+ T cell reactivity profile in vaccinated HD and CD, with an increase in S1 and S2 positive individuals, proportionally higher for S2. On the contrary, NCAP reactivity observed in HD and CD patients was no longer detectable after vaccination. Despite the substantial antibody response in CD, MPro-derived peptides did not elicit CD4+ lymphocyte activation in our assay in either condition. HD presented an increment in anti-S and anti-RBD IgG after first dose vaccination, which increased after the second vaccination. Conversely, anti-S and anti-RBD IgG and IgA titers increased in already positive CD after first dose administration, remaining stable after second dose inoculation. Interestingly, we found a strong significant correlation between S1-induced CD4+ response and anti-S IgA pre-vaccination, which was lost after vaccine administration.


Subject(s)
BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adult , Cells, Cultured , Convalescence , Female , Healthy Volunteers , Humans , Immunization, Secondary , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , T-Cell Antigen Receptor Specificity , Vaccination
12.
Front Immunol ; 12: 815651, 2021.
Article in English | MEDLINE | ID: mdl-35087533

ABSTRACT

Coronavirus Disease 2019 (COVID-19) pneumonia is a life-threatening infectious disease, especially for elderly patients with multiple comorbidities. Despite enormous efforts to understand its underlying etiopathogenic mechanisms, most of them remain elusive. In this study, we compared differential plasma miRNAs and cytokines profiles between COVID-19 and other community-acquired pneumonias (CAP). A first screening and subsequent validation assays in an independent cohort of patients revealed a signature of 15 dysregulated miRNAs between COVID-19 and CAP patients. Additionally, multivariate analysis displayed a combination of 4 miRNAs (miR-106b-5p, miR-221-3p, miR-25-3p and miR-30a-5p) that significantly discriminated between both pathologies. Search for targets of these miRNAs, combined with plasma protein measurements, identified a differential cytokine signature between COVID-19 and CAP that included EGFR, CXCL12 and IL-10. Significant differences were also detected in plasma levels of CXCL12, IL-17, TIMP-2 and IL-21R between mild and severe COVID-19 patients. These findings provide new insights into the etiopathological mechanisms underlying COVID-19.


Subject(s)
COVID-19/immunology , Circulating MicroRNA/blood , Cytokines/blood , Pneumonia/immunology , Biomarkers/blood , COVID-19/blood , Cohort Studies , Community-Acquired Infections/blood , Community-Acquired Infections/immunology , Female , Humans , Logistic Models , Male , Middle Aged , Pneumonia/blood
13.
Eur J Immunol ; 51(3): 634-647, 2021 03.
Article in English | MEDLINE | ID: mdl-33251605

ABSTRACT

SARS-CoV-2 infection causes an abrupt response by the host immune system, which is largely responsible for the outcome of COVID-19. We investigated whether the specific immune responses in the peripheral blood of 276 patients were associated with the severity and progression of COVID-19. At admission, dramatic lymphopenia of T, B, and NK cells is associated with severity. Conversely, the proportion of B cells, plasmablasts, circulating follicular helper T cells (cTfh) and CD56- CD16+ NK-cells increased. Regarding humoral immunity, levels of IgM, IgA, and IgG were unaffected, but when degrees of severity were considered, IgG was lower in severe patients. Compared to healthy donors, complement C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, while the activation peptide of C5 (C5a) increased from the admission in every patient, regardless of their severity. Moreover, total IgG, the IgG1 and IgG3 isotypes, and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Our study provides important clues to understand the immune response observed in COVID-19 patients, associating severity with an imbalanced humoral response, and identifying new targets for therapeutic intervention.


Subject(s)
B-Lymphocytes/immunology , COVID-19/pathology , Immunoglobulins/blood , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , COVID-19/immunology , Complement C3/analysis , Complement C4/analysis , Complement C5/analysis , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Lymphocyte Count , Lymphopenia/immunology , Male , Middle Aged , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology
14.
J Allergy Clin Immunol ; 147(1): 72-80.e8, 2021 01.
Article in English | MEDLINE | ID: mdl-33010257

ABSTRACT

BACKGROUND: Patients with coronavirus disaese 2019 (COVID-19) can develop a cytokine release syndrome that eventually leads to acute respiratory distress syndrome requiring invasive mechanical ventilation (IMV). Because IL-6 is a relevant cytokine in acute respiratory distress syndrome, the blockade of its receptor with tocilizumab (TCZ) could reduce mortality and/or morbidity in severe COVID-19. OBJECTIVE: We sought to determine whether baseline IL-6 serum levels can predict the need for IMV and the response to TCZ. METHODS: A retrospective observational study was performed in hospitalized patients diagnosed with COVID-19. Clinical information and laboratory findings, including IL-6 levels, were collected approximately 3 and 9 days after admission to be matched with preadministration and postadministration of TCZ. Multivariable logistic and linear regressions and survival analysis were performed depending on outcomes: need for IMV, evolution of arterial oxygen tension/fraction of inspired oxygen ratio, or mortality. RESULTS: One hundred forty-six patients were studied, predominantly males (66%); median age was 63 years. Forty-four patients (30%) required IMV, and 58 patients (40%) received treatment with TCZ. IL-6 levels greater than 30 pg/mL was the best predictor for IMV (odds ratio, 7.1; P < .001). Early administration of TCZ was associated with improvement in oxygenation (arterial oxygen tension/fraction of inspired oxygen ratio) in patients with high IL-6 (P = .048). Patients with high IL-6 not treated with TCZ showed high mortality (hazard ratio, 4.6; P = .003), as well as those with low IL-6 treated with TCZ (hazard ratio, 3.6; P = .016). No relevant serious adverse events were observed in TCZ-treated patients. CONCLUSIONS: Baseline IL-6 greater than 30 pg/mL predicts IMV requirement in patients with COVID-19 and contributes to establish an adequate indication for TCZ administration.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19 Drug Treatment , COVID-19 , Cytokine Release Syndrome , Interleukin-6/blood , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/mortality , Disease-Free Survival , Female , Humans , Male , Middle Aged , Retrospective Studies , Survival Rate
15.
J Immunol ; 205(11): 3130-3140, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33148714

ABSTRACT

Currently, there is a need for reliable tests that allow identification of individuals that have been infected with SARS-CoV-2 even if the infection was asymptomatic. To date, the vast majority of the serological tests for SARS-CoV-2-specific Abs are based on serum detection of Abs to either the viral spike glycoprotein (the major target for neutralizing Abs) or the viral nucleocapsid protein that is known to be highly immunogenic in other coronaviruses. Conceivably, exposure of Ags released from infected cells could stimulate Ab responses that might correlate with tissue damage and, hence, they may have some value as a prognostic indicator. We addressed whether other nonstructural viral proteins, not incorporated into the infectious viral particle, specifically the viral cysteine-like protease, might also be potent immunogens. Using ELISA tests, coating several SARS-CoV-2 proteins produced in vitro, we describe that COVID-19 patients make high titer IgG, IgM, and IgA Ab responses to the Cys-like protease from SARS-CoV-2, also known as 3CLpro or Mpro, and it can be used to identify individuals with positive serology against the coronavirus. Higher Ab titers in these assays associated with more-severe disease, and no cross-reactive Abs against prior betacoronavirus were found. Remarkably, IgG Abs specific for Mpro and other SARS-CoV-2 Ags can also be detected in saliva. In conclusion, Mpro is a potent Ag in infected patients that can be used in serological tests, and its detection in saliva could be the basis for a rapid, noninvasive test for COVID-19 seropositivity.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/metabolism , Coronavirus Infections/blood , Cysteine Proteases/metabolism , Nucleocapsid Proteins/metabolism , Pneumonia, Viral/blood , Saliva/metabolism , Adult , Aged , COVID-19 , Female , HEK293 Cells , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2
16.
J Clin Invest ; 130(12): 6290-6300, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32784290

ABSTRACT

SARS-CoV-2 is responsible for the development of coronavirus disease 2019 (COVID-19) in infected individuals, who can either exhibit mild symptoms or progress toward a life-threatening acute respiratory distress syndrome (ARDS). Exacerbated inflammation and dysregulated immune responses involving T and myeloid cells occur in COVID-19 patients with severe clinical progression. However, the differential contribution of specific subsets of dendritic cells and monocytes to ARDS is still poorly understood. In addition, the role of CD8+ T cells present in the lung of COVID-19 patients and relevant for viral control has not been characterized. Here, we have studied the frequencies and activation profiles of dendritic cells and monocytes present in the blood and lung of COVID-19 patients with different clinical severity in comparison with healthy individuals. Furthermore, these subpopulations and their association with antiviral effector CD8+ T cell subsets were also characterized in lung infiltrates from critical COVID-19 patients. Our results indicate that inflammatory transitional and nonclassical monocytes and CD1c+ conventional dendritic cells preferentially migrate from blood to lungs in patients with severe COVID-19. Thus, this study increases the knowledge of specific myeloid subsets involved in the pathogenesis of COVID-19 disease and could be useful for the design of therapeutic strategies for fighting SARS-CoV-2 infection.


Subject(s)
Antigens, CD1/immunology , COVID-19/immunology , Cell Movement/immunology , Glycoproteins/immunology , Lung/immunology , Monocytes/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Dendritic Cells/immunology , Dendritic Cells/pathology , Female , Humans , Lung/pathology , Male , Middle Aged , Monocytes/classification , Monocytes/pathology , Severity of Illness Index
17.
Cells ; 9(7)2020 07 02.
Article in English | MEDLINE | ID: mdl-32630692

ABSTRACT

miRNAs have been associated with psoriasis since just over a decade. However, we are far from a complete understanding of their role during the development of this disease. Our objective was to characterize the cutaneous expression of miRNAs not previously described in psoriasis, the changes induced following the treatment with biologicals and their association with disease improvement. Next generation sequencing was performed from five skin samples from psoriasis patients (lesional and non-lesional skin) and five controls, and from this cohort, 12 microRNAs were selected to be analyzed in skin samples from 44 patients with plaque psoriasis. In 15 patients, an additional sample was obtained after three months of biological treatment. MiR-9-5p, miR-133a-3p and miR-375 were downregulated in the lesional skin of psoriasis patients. After treatment, expression of miR-133a-3p, miR-375, miR-378a and miR-135b in residual lesions returned towards the levels observed in non-lesional skin. The decrease in miR-135b levels after treatment with biologics was associated with both the improvement of patients evaluated through Psoriasis Area and Severity Index score and the decrease in local inflammatory response. Moreover, basal expression of miR-135b along with age was associated with the improvement of psoriasis, suggesting its possible usefulness as a prognostic biomarker.


Subject(s)
MicroRNAs/genetics , Psoriasis/metabolism , Skin/metabolism , Adult , Biological Products/therapeutic use , Biomarkers/metabolism , Humans , MicroRNAs/metabolism , Middle Aged , Psoriasis/drug therapy , Psoriasis/genetics , Skin/pathology
18.
medRxiv ; 2020 May 16.
Article in English | MEDLINE | ID: mdl-32511573

ABSTRACT

The SARS-CoV-2 is responsible for the pandemic COVID-19 in infected individuals, who can either exhibit mild symptoms or progress towards a life-threatening acute respiratory distress syndrome (ARDS). It is known that exacerbated inflammation and dysregulated immune responses involving T and myeloid cells occur in COVID-19 patients with severe clinical progression. However, the differential contribution of specific subsets of dendritic cells and monocytes to ARDS is still poorly understood. In addition, the role of CD8+ T cells present in the lung of COVID-19 patients and relevant for viral control has not been characterized. With the aim to improve the knowledge in this area, we developed a cross-sectional study, in which we have studied the frequencies and activation profiles of dendritic cells and monocytes present in the blood of COVID-19 patients with different clinical severity in comparison with healthy control individuals. Furthermore, these subpopulations and their association with antiviral effector CD8+ T cell subsets were also characterized in lung infiltrates from critical COVID-19 patients. Collectively, our results suggest that inflammatory transitional and non-classical monocytes preferentially migrate from blood to lungs in patients with severe COVID-19. CD1c+ conventional dendritic cells also followed this pattern, whereas CD141+ conventional and CD123hi plasmacytoid dendritic cells were depleted from blood but were absent in the lungs. Thus, this study increases the knowledge on the pathogenesis of COVID-19 disease and could be useful for the design of therapeutic strategies to fight SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...