Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Calcium ; 119: 102856, 2024 May.
Article in English | MEDLINE | ID: mdl-38408411

ABSTRACT

NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.


Subject(s)
Neoplasms , Neurodegenerative Diseases , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Neurodegenerative Diseases/metabolism , Glutamic Acid/metabolism , Cell Cycle
2.
Viruses ; 15(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36851625

ABSTRACT

Baculoviridae is a large family of arthropod-infective viruses. Recombinant baculoviruses have many applications, the best known is as a system for large scale protein production in combination with insect cell cultures. More recently recombinant baculoviruses have been utilized for the display of proteins of interest with applications in medicine. In the present review we analyze the different strategies for the display of proteins and peptides on the surface of recombinant baculoviruses and provide some examples of the different proteins displayed. We analyze briefly the commercially available systems for recombinant baculovirus production and display and discuss the future of this emerging and powerful technology.


Subject(s)
Arthropods , Baculoviridae , Animals , Baculoviridae/genetics , Peptides/genetics , Cell Culture Techniques
3.
Viruses ; 14(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35062298

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current pandemic affecting almost all countries in the world. SARS-CoV-2 is the agent responsible for coronavirus disease 19 (COVID-19), which has claimed millions of lives around the world. In most patients, SARS-CoV-2 infection does not cause clinical signs. However, some infected people develop symptoms, which include loss of smell or taste, fever, dry cough, headache, severe pneumonia, as well as coagulation disorders. The aim of this work is to report genetic factors of SARS-CoV-2 and host-associated to severe COVID-19, placing special emphasis on the viral entry and molecules of the immune system involved with viral infection. Besides this, we analyze SARS-CoV-2 variants and their structural characteristics related to the binding to polymorphic angiotensin-converting enzyme type 2 (ACE2). Additionally, we also review other polymorphisms as well as some epigenetic factors involved in the immunopathogenesis of COVID-19. These factors and viral variability could explain the increment of infection rate and/or in the development of severe COVID-19.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic/immunology , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antigenic Drift and Shift , COVID-19/immunology , COVID-19/virology , Genetic Variation , Host-Pathogen Interactions , Humans , SARS-CoV-2/immunology
4.
Front Immunol ; 12: 701501, 2021.
Article in English | MEDLINE | ID: mdl-34322129

ABSTRACT

Coronavirus 19 Disease (COVID-19) originating in the province of Wuhan, China in 2019, is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), whose infection in humans causes mild or severe clinical manifestations that mainly affect the respiratory system. So far, the COVID-19 has caused more than 2 million deaths worldwide. SARS-CoV-2 contains the Spike (S) glycoprotein on its surface, which is the main target for current vaccine development because antibodies directed against this protein can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. However, the emergence of new SARS-CoV-2 variants could affect the effectiveness of vaccines. Here, we review the different types of vaccines designed and developed against SARS-CoV-2, placing emphasis on whether they are based on the complete S glycoprotein, its antigenic domains such as the receptor-binding domain (RBD) or short epitopes within the S glycoprotein. We also review and discuss the possible effectiveness of these vaccines against emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunodominant Epitopes/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/genetics , Humans , Immune Evasion , Immunogenicity, Vaccine , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...