Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894871

ABSTRACT

Among malignant neoplasms, pancreatic ductal adenocarcinoma (PDAC) has one of the highest fatality rates due to its late detection. Therefore, it is essential to discover a noninvasive, early, specific, and sensitive diagnostic method. MicroRNAs (miRNAs) are attractive biomarkers because they are accessible, highly specific, and sensitive. It is crucial to find miRNAs that could be used as possible biomarkers because PDAC is the eighth most common cause of cancer death in Mexico. With the help of microRNA microarrays, differentially expressed miRNAs (DEmiRNAs) were found in PDAC tissues. The presence of these DEmiRNAs in the plasma of Mexican patients with PDAC was determined using RT-qPCR. Receiver operating characteristic curve analysis was performed to determine the diagnostic capacity of these DEmiRNAs. Gene Expression Omnibus datasets (GEO) were employed to verify our results. The Prisma V8 statistical analysis program was used. Four DEmiRNAs in plasma from PDAC patients and microarray tissues were found. Serum samples from patients with PDAC were used to validate their overexpression in GEO databases. We discovered a new panel of the two miRNAs miR-222-3p and miR-221-3p that could be used to diagnose PDAC, and when miR-221-3p and miR-222-3p were overexpressed, survival rates decreased. Therefore, miR-222-3p and miR-221-3p might be employed as noninvasive indicators for the diagnosis and survival of PDAC in Mexican patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Circulating MicroRNA , MicroRNAs , Pancreatic Neoplasms , Humans , Circulating MicroRNA/genetics , Mexico , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , MicroRNAs/metabolism , Biomarkers , Biomarkers, Tumor/genetics , Pancreatic Neoplasms
2.
Vaccines (Basel) ; 11(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37112776

ABSTRACT

Despite all successful efforts to develop a COVID-19 vaccine, the need to evaluate alternative antigens to produce next-generation vaccines is imperative to target emerging variants. Thus, the second generation of COVID-19 vaccines employ more than one antigen from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce an effective and lasting immune response. Here, we analyzed the combination of two SARS-CoV-2 viral antigens that could elicit a more durable immune response in both T- and B-cells. The nucleocapsid (N) protein, Spike protein S1 domain, and receptor binding domain (RBD) of the SARS-CoV-2 spike surface glycoproteins were expressed and purified in a mammalian expression system, taking into consideration the posttranscriptional modifications and structural characteristics. The immunogenicity of these combined proteins was evaluated in a murine model. Immunization combining S1 or RBD with the N protein induced higher levels of IgG antibodies, increased the percentage of neutralization, and elevated the production of cytokines TNF-α, IFN-γ, and IL-2 compared to the administration of a single antigen. Furthermore, sera from immunized mice recognized alpha and beta variants of SARS-CoV-2, which supports ongoing clinical results on partial protection in vaccinated populations, despite mutations. This study identifies potential antigens for second-generation COVID-19 vaccines.

3.
Diagnostics (Basel) ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34679506

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has reached an unprecedented level. There is a strong demand for diagnostic and serological supplies worldwide, making it necessary for countries to establish their own technologies to produce high-quality biomolecules. The two main viral antigens used for the diagnostics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) are the structural proteins spike (S) protein and nucleocapsid (N) protein. The spike protein of SARS-CoV-2 is cleaved into S1 and S2, in which the S1 subunit has the receptor-binding domain (RBD), which induces the production of neutralizing antibodies, whereas nucleocapsid is an ideal target for viral antigen-based detection. In this study, we designed plasmids, pcDNA3.1/S1 and pcDNA3.1/N, and optimized their expression of the recombinant S1 and N proteins from SARS-CoV-2 in a mammalian system. The RBD was used as a control. The antigens were successfully purified from Expi293 cells, with high yields of the S1, N, and RBD proteins. The immunogenic abilities of these proteins were demonstrated in a mouse model. Further, enzyme-linked immunosorbent assays with human serum samples showed that the SARS-CoV-2 antigens are a suitable alternative for serological assays to identify patients infected with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...