Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34947121

ABSTRACT

The fabrication approach of a magnonic crystal with a step-like hysteresis behavior based on a uniform non-monotonous iron layer made by shadow deposition on a preconfigured substrate is reported. The origin of the step-like hysteresis loop behavior is studied with local and integral magnetometry methods, including First-Order Reversal Curves (FORC) diagram analysis, accompanied with magnetic microstructure dynamics measurements. The results are validated with macroscopic magnetic properties and micromagnetic simulations using the intrinsic switching field distribution model. The proposed fabrication method can be used to produce magnonic structures with the controllable hysteresis plateau region's field position and width that can be used to control the magnonic crystal's band structure by changing of an external magnetic field.

2.
Antibiotics (Basel) ; 10(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513680

ABSTRACT

The urgency for the availability of new antibacterial/disinfectant agents has become a worldwide priority. At the same time, along with the extensive use of other metal nanoparticles (NPs), the investigation of magnetic NPs (MNPs) in antibacterial studies has turned out to be an increasingly attractive research field. In this context, we present the preparation and characterization of superparamagnetic iron oxide NPs, electrodecorated with antimicrobial copper NPs, able to modulate the release of bioactive species not only by the NP's stabilizer, but also through the application of a suitable magnetic field. Antimicrobial synergistic CuNPs stabilized by benzalkonium chloride have been used in the current study. We demonstrate the successful preparation of Cu@Fe3O4 MNPs composites through morphological and spectroscopic results. Additionally, an extensive magnetic characterization is reported, along with hyperthermia-induced copper ionic release. On the basis of our results, we propose a new generation of antimicrobial magnetic nanomaterials, whose bioactivity can be also tuned by the application of a magnetic field.

3.
Anal Bioanal Chem ; 411(25): 6615-6624, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31359119

ABSTRACT

Histamine, a biogenic amine, is abundant in fermented foods and beverages, notably wine. A high intake of this monoamine may produce adverse reactions in humans, which may be severe in individuals with a reduced capacity to catabolise extrinsic histamine. Thus, control of histamine concentration during wine production and before distribution is advisable. Simple, rapid, point-of-use bioanalytical platforms are needed because traditional methods for the detection and quantification of histamine are expensive and time-consuming. This work applies the lateral flow immunoassay technique to histamine detection. Superparamagnetic particle labels, and an inductive sensor designed to read the test line in the immunoassay, enable magnetic quantification of the molecule. The system is calibrated with histamine standards in the interval of interest for wine production. A commercial optical strip reader is used for comparison measurements. The lateral flow system has a limit of detection of 1.2 and 1.5 mg/L for the inductive and optical readers, respectively. The capability of the inductive system for histamine quantification is demonstrated for wine samples at different processing points (at the end of alcoholic fermentation, at the end of malolactic fermentation, in freshly bottled wine, and in reserve wine). The results are validated by ultra-high-performance liquid chromatography. Graphical abstract.


Subject(s)
Histamine/analysis , Wine/analysis , Biogenic Amines/analysis , Equipment Design , Immunoassay/methods , Limit of Detection , Magnetite Nanoparticles/chemistry , Reagent Strips/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...