Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Struct Biol ; 215(3): 108007, 2023 09.
Article in English | MEDLINE | ID: mdl-37524272

ABSTRACT

Coiled coils are a widespread and well understood protein fold. Their short and simple repeats underpin considerable structural and functional diversity. The vast majority of coiled coils consist of 7-residue (heptad) sequence repeats, but in essence most combinations of 3- and 4-residue segments, each starting with a residue of the hydrophobic core, are compatible with coiled-coil structure. The most frequent among these other repeat patterns are 11-residue (hendecad, 3 + 4 + 4) repeats. Hendecads are frequently found in low copy number, interspersed between heptads, but some proteins consist largely or entirely of hendecad repeats. Here we describe the first large-scale survey of these proteins in the proteome of life. For this, we scanned the protein sequence database for sequences with 11-residue periodicity that lacked ß-strand prediction. We then clustered these by pairwise similarity to construct a map of potential hendecad coiled-coil families. Here we discuss these according to their structural properties, their potential cellular roles, and the evolutionary mechanisms shaping their diversity. We note in particular the continuous amplification of hendecads, both within existing proteins and de novo from previously non-coding sequence, as a powerful mechanism in the genesis of new coiled-coil forms.


Subject(s)
Proteome , Proteome/genetics , Amino Acid Sequence , Protein Domains , Protein Conformation
2.
PLoS One ; 18(1): e0273136, 2023.
Article in English | MEDLINE | ID: mdl-36662698

ABSTRACT

DivIVA, GpsB, FilP, and Scy are all involved in bacterial cell division. They have been reported to interact with each other, and although they have been the subject of considerable research interest, not much is known about the molecular basis for their biological activity. Although they show great variability in taxonomic occurrence, phenotypic profile, and molecular properties, we find that they nevertheless share a conserved N-terminal sequence motif, which points to a common evolutionary origin. The motif always occurs N-terminally to a coiled-coil helix that mediates dimerization. We define the motif and coiled coil jointly as a new domain, which we name DivIVA-like. In a large-scale survey of this domain in the protein sequence database, we identify a new family of proteins potentially involved in cell division, whose members, unlike all other DivIVA-like proteins, have between 2 and 8 copies of the domain in tandem. AlphaFold models indicate that the domains in these proteins assemble within a single chain, therefore not mediating dimerization.


Subject(s)
Bacterial Proteins , Cell Cycle Proteins , Cell Cycle Proteins/metabolism , Bacterial Proteins/metabolism , Cell Division/genetics , Protein Domains , Gram-Positive Bacteria/metabolism
3.
Proc Natl Acad Sci U S A ; 114(39): E8274-E8283, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28900007

ABSTRACT

α-Synuclein (aSyn) is the main driver of neurodegenerative diseases known as "synucleinopathies," but the mechanisms underlying this toxicity remain poorly understood. To investigate aSyn toxic mechanisms, we have developed a primary neuronal model in which a longitudinal survival analysis can be performed by following the overexpression of fluorescently tagged WT or pathologically mutant aSyn constructs. Most aSyn mutations linked to neurodegenerative disease hindered neuronal survival in this model; of these mutations, the E46K mutation proved to be the most toxic. While E46K induced robust PLK2-dependent aSyn phosphorylation at serine 129, inhibiting this phosphorylation did not alleviate aSyn toxicity, strongly suggesting that this pathological hallmark of synucleinopathies is an epiphenomenon. Optical pulse-chase experiments with Dendra2-tagged aSyn versions indicated that the E46K mutation does not alter aSyn protein turnover. Moreover, since the mutation did not promote overt aSyn aggregation, we conclude that E46K toxicity was driven by soluble species. Finally, we developed an assay to assess whether neurons expressing E46K aSyn affect the survival of neighboring control neurons. Although we identified a minor non-cell-autonomous component spatially restricted to proximal neurons, most E46K aSyn toxicity was cell autonomous. Thus, we have been able to recapitulate the toxicity of soluble aSyn species at a stage preceding aggregation, detecting non-cell-autonomous toxicity and evaluating how some of the main aSyn hallmarks are related to neuronal survival.


Subject(s)
Mutation, Missense , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Amino Acid Substitution , Animals , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons/pathology , Phosphorylation , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Rats , Rats, Sprague-Dawley , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...