Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 17(34): 7940-7952, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34378618

ABSTRACT

The importance of electrically functional biomaterials is increasing as researchers explore ways to utilise them in novel sensing capacities. It has been recognised that for many of these materials the state of hydration is a key parameter that can heavily affect the conductivity, particularly those that rely upon ionic or proton transport as a key mechanism. However, thus far little attention has been paid to the nature of the water morphology in the hydrated state and the concomitant ionic conductivity. Presented here is an inelastic neutron scattering (INS) experiment on hydrated eumelanin, a model bioelectronic material, in order to investigate its 'water morphology'. We develop a rigorous new methodology for performing hydration dependent INS experiments. We also model the eumelanin dry spectra with a minimalist approach whereas for higher hydration levels we are able to obtain difference spectra to extract out the water scattering signal. A key result is that the physi-sorbed water structure within eumelanin is dominated by interfacial water with the number of water layers between 3-5, and no bulk water. We also detect for the first time, the potential signatures for proton cations, most likely the Zundel ion, within a biopolymer/water system. These new signatures may be general for soft proton ionomer systems, if the systems are comprised of only interfacial water within their structure. The nature of the water morphology opens up new questions about the potential ionic charge transport mechanisms within hydrated bioelectronics materials.


Subject(s)
Melanins , Water , Electric Conductivity
2.
Analyst ; 145(11): 4051, 2020 06 07.
Article in English | MEDLINE | ID: mdl-32391822

ABSTRACT

Correction for 'Feasibility of attenuated total reflection-fourier transform infrared (ATR-FTIR) chemical imaging and partial least squares regression (PLSR) to predict protein adhesion on polymeric surfaces' by S. Mukherjee et al., Analyst, 2019, 144, 1535-1545. DOI.

3.
Analyst ; 144(5): 1535-1545, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30542682

ABSTRACT

Predicting the degree to which proteins adhere to a polymeric surface is an ongoing challenge in the scientific community to prevent non-specific protein adhesion and drive favourable protein - surface interactions. This work explores the potential of multivariate PLSR modelling in conjunction with Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) chemical imaging to investigate whether experimentally characterised surface chemistry can be used to predict surface protein adhesion. ATR-FTIR spectra were collected on dry and wetted polymeric surfaces, followed by evaluation of adhered fibrinogen on surfaces using the micro bicinchoninic (BCA) protein assay as a reference method. Partial Least Squares Regression (PLSR) models were built using IR spectra as the predictor variable. Overall the models built with 'wetted polymer' IR spectra performed better as compared to the models built using 'dry polymer' IR spectra (average coefficient of determination, R2P 0.998, 0.996 respectively), with the lowest error in prediction (4 ± 0.6 µg) for ultra-high molecular weight polyethylene (UHMPE) as a test surface. This indicates the potential of this method to predict the degree to which protein adhesion occurs on polymeric surfaces using experimentally determined surface chemistry.


Subject(s)
Fibrinogen/metabolism , Polymers/metabolism , Adhesiveness , Calibration , Fibrinogen/chemistry , Fourier Analysis , Least-Squares Analysis , Models, Chemical , Polymers/chemistry , Protein Binding , Spectroscopy, Fourier Transform Infrared
4.
Analyst ; 143(15): 3729-3740, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-29989634

ABSTRACT

The static water contact angle (CA) quantifies the degree of wetting that occurs when a surface encounters a liquid, e.g. water. This property is a result of factors such as surface chemistry and local roughness and is an important analytical parameter linked to the suitability of a surface for a given bioanalytical process. Monitoring the spatial variation in wettability over surfaces is increasingly critical to analysts and manufacturers for improved quality control. However, CA acquisition is often time-consuming because it involves measurements over multiple spatial locations, independent sampling and the need for a single instrument operator. Furthermore, surfaces exposed to local environments specific to an intended application may affect the surface chemistry thereby modifying the surface properties. In this study, Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) chemical imaging data acquired from wet and dry polymer surfaces were used to develop multivariate predictive models for CA prediction. Partial Least Squares Regression (PLSR) models were built using IR spectra from surfaces presenting differences in the experimentally measured CA in the range 16°-141°. The best performing PLSR models were locally developed and combined to make a global model utilising wet IR spectra which performed well (R2p = 0.98, RMSECV ∼ 5°) when tested on an independent experimental set. This model was subsequently applied to IR spectra acquired from a surface exhibiting spatial differences in surface chemistry and the CA with a reasonable confidence and precision (prediction error within 10°), demonstrating the potential of this method for prediction of the spatially varying CA as a non-destructive in-line process monitoring technique.

5.
J Chem Phys ; 140(19): 194505, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24852548

ABSTRACT

Short ranged potentials and their anisotropy produce spontaneous chiral resolution in a two dimensional model of patchy particles introduced in this paper. This model could represent an equimolar binary mixture (racemic mixture) of two kinds of chiral molecules (enantiomers) adsorbed to a bi-dimensional domain where only lateral short ranged interactions are present. Most racemic mixtures undergo chiral resolution due to their spatial anisotropy, the combined effect of long range forces and the thermodynamic conditions. The patchy particles are modeled as a hard disk and four different bonding sites located to produce chirality. Phase behavior and structural properties are analysed using Discontinuous Molecular Dynamics in the canonical ensemble. When the four patchy particles are separated by the angles {60°, 120°, 60°, 120°}, spontaneous chiral resolution is produced, given by the formation of homochiral clusters, if started from the corresponding racemic mixture. Gel behavior is also obtained in all the systems for low temperatures and low densities.


Subject(s)
Biopolymers/chemistry , Colloids/chemistry , Complex Mixtures/chemistry , Models, Chemical , Models, Molecular , Computer Simulation , Particle Size , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...