Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Chem Phys ; 142(5): 054501, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25662648

ABSTRACT

Molecular dynamics simulations are performed to clarify the reasons for the disagreement found in a previous publication [G. A. Chapela, F. del Río, and J. Alejandre, J. Chem. Phys. 138(5), 054507 (2013)] regarding the metastability of liquid-vapor coexistence on equimolar charged binary mixtures of fluids interacting with a soft Yukawa potential with κσ = 6. The fluid-solid separation obtained with the two-phase simulation method is found to be in agreement with previous works based on free energy calculations [A. Fortini, A.-P. Hynninen, and M. Dijkstra, J. Chem. Phys. 125, 094502 (2006)] only when the CsCl structure of the solid is used. It is shown that when pressure is increased at constant temperature, the solids are amorphous having different structures, densities, and the diagonal components of the pressure tensor are not equal. A stable low density fluid-solid phase separation is not observed for temperatures above the liquid-vapor critical point. In addition, Monte Carlo and discontinuous molecular dynamics simulations are performed on the square well model of range 1.15σ. A stable fluid-solid transition is observed above the vapor-liquid critical temperature only when the solid has a face centered cubic crystalline structure.


Subject(s)
Colloids/chemistry , Molecular Dynamics Simulation , Phase Transition , Temperature , Volatilization
3.
Soft Matter ; 10(45): 9167-76, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25319927

ABSTRACT

A vibrating version of patchy particles in two dimensions is introduced to study self-assembly of kagome lattices, disordered networks of looping structures, and linear arrays. Discontinuous molecular dynamics simulations in the canonical ensemble are used to characterize the molecular architectures and thermodynamic conditions that result in each of those morphologies, as well as the time evolution of lattice formation. Several versions of the new model are tested and analysed in terms of their ability to produce kagome lattices. Due to molecular flexibility, particles with just attractive sites adopt a polarized-like configuration and assemble into linear arrays. Particles with additional repulsive sites are able to form kagome lattices, but at low temperature connect as entangled webs. Abundance of hexagonal motifs, required for the kagome lattice, is promoted even for very small repulsive sites but hindered when the attractive range is large. Differences in behavior between the new flexible model and previous ones based on rigid bodies offer opportunities to test and develop theories about the relative stability, kinetics of formation and mechanical response of the observed morphologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...