Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 107(10): 2748-2757, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35914803

ABSTRACT

CONTEXT: DNA methylation in the diagnosis of gestational diabetes. OBJECTIVE: To assess the value of DNA methylation in the diagnosis of gestational diabetes (GDM) and in the prediction of maternal postpartum glucose disturbances. METHODS: Two-stage observational study performed between July 2006 and December 2010, at University Hospital. Forty-eight randomly selected pregnant women formed the discovery cohort (24 with GDM and 24 controls) and 252 pregnant women (94 with GDM and 158 controls) formed the replication cohort. GDM women were re-evaluated 4 years postpartum. The main outcome measures were GDM, type 2 diabetes or prediabetes at 4 years postpartum. RESULTS: We identified 3 CpG sites related to LINC00917, TRAPPC9, and LEF1 that were differentially methylated in women with GDM and abnormal glucose tolerance; and sites associated with LINC00917 and TRAPPC9 were independently associated with an abnormal glucose tolerance status 4 years postpartum after controlling for clinical variables. Moreover, the site associated with LINC00917 and the combination of the 3 sites had the highest predictive values. CONCLUSION: Our results suggest that some of these sites may be implicated in the development of GDM and postpartum abnormal glucose tolerance.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Glucose Intolerance , Blood Glucose , DNA Methylation , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes, Gestational/diagnosis , Diabetes, Gestational/genetics , Female , Glucose , Glucose Intolerance/diagnosis , Glucose Intolerance/genetics , Glucose Tolerance Test , Humans , Postpartum Period , Pregnancy
2.
Stem Cells Transl Med ; 9(3): 351-363, 2020 03.
Article in English | MEDLINE | ID: mdl-31880859

ABSTRACT

Fetal programming has been proposed as a key mechanism underlying the association between intrauterine exposure to maternal diabetes and negative health outcomes in offspring. To determine whether gestational diabetes mellitus (GDM) might leave an imprint in fetal precursors of the amniotic membrane and whether it might be related to adverse outcomes in offspring, a prospective case-control study was conducted, in which amniotic mesenchymal stem cells (AMSCs) and resident macrophages were isolated from pregnant patients, with either GDM or normal glucose tolerance, scheduled for cesarean section. After characterization, functional characteristics of AMSCs were analyzed and correlated with anthropometrical and clinical variables from both mother and offspring. GDM-derived AMSCs displayed an impaired proliferation and osteogenic potential when compared with control cells, accompanied by superior invasive and chemotactic capacity. The expression of genes involved in the inflammatory response (TNFα, MCP-1, CD40, and CTSS) was upregulated in GDM-derived AMSCs, whereas anti-inflammatory IL-33 was downregulated. Macrophages isolated from the amniotic membrane of GDM mothers consistently showed higher expression of MCP-1 as well. In vitro studies in which AMSCs from healthy control women were exposed to hyperglycemia, hyperinsulinemia, and palmitic acid confirmed these results. Finally, genes involved in the inflammatory response were associated with maternal insulin sensitivity and prepregnancy body mass index, as well as with fetal metabolic parameters. These results suggest that the GDM environment could program stem cells and subsequently favor metabolic dysfunction later in life. Fetal adaptive programming in the setting of GDM might have a direct negative impact on insulin resistance of offspring.


Subject(s)
Diabetes, Gestational/physiopathology , Fetal Development/physiology , Immunophenotyping/methods , Adult , Cell Proliferation , Erythroid Precursor Cells , Female , Humans , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...