Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pulm Med ; 22(1): 106, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35346135

ABSTRACT

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is characterized by progressive and irreversible airflow limitation. Different factors that modify pulmonary function include age, sex, muscular strength, and a history of exposure to toxic agents. However, the impact of body composition compartments and sarcopenia on pulmonary function is not well-established. This study aimed to evaluate how body composition compartments and sarcopenia affect pulmonary function in COPD patients. METHODS: In a cross-sectional study, patients with a confirmed diagnosis of COPD, > 40 years old, and forced expiratory volume in the first second /forced vital capacity ratio (FEV1/FVC) < 0.70 post-bronchodilator were included. Patients with cancer, HIV, and asthma were excluded. Body composition was measured with bioelectrical impedance. Sarcopenia was defined according to EWGSOP2, and pulmonary function was assessed by spirometry. RESULTS: 185 patients were studied. The mean age was 72.20 ± 8.39 years; 55.14% were men. A linear regression adjusted model showed associations between body mass index, fat-free mass, skeletal muscle mass index, appendicular skeletal muscle mass index, and phase angle (PhA), and sarcopenia with FEV1 (%). As regards FVC (%), PhA and exercise tolerance had positive associations. CONCLUSION: Body composition, especially PhA, SMMI, ASMMI, and sarcopenia, has a significant impact on pulmonary function. Early detection of disturbances of these indexes enables the early application of such therapeutic strategies in COPD patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sarcopenia , Adult , Aged , Aged, 80 and over , Body Composition , Cross-Sectional Studies , Humans , Lung , Male , Middle Aged
2.
Sci Rep ; 12(1): 1216, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075255

ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) patients have alterations in body composition. Bioelectrical impedance analysis (BIA) evaluates body composition, hydration status, and fluid distribution. Subjects with fluid disturbances have been found to have lower FEV1, respiratory muscle strength, and poor prognosis. We aimed to evaluate the effect of hydration status and fluid distribution on pulmonary function in COPD patients. A cross-sectional study, 180 patients with a confirmed diagnosis of COPD were included. Patients with asthma, advanced renal or liver disease, acute HF, exacerbation of COPD, or pacemakers were excluded. Hydration status variables (TBW, ECW, ICW) and disturbance of fluid distribution [impedance ratio (IR) > 0.84 and phase angle (PhA)] were evaluated by BIA. Pulmonary function was assessed by spirometry. The mean population age was 71.55 ± 8.94 years; 55% were men. Subjects were divided into two groups according to the IR ≥ 0.84 or < 0.84. The group with higher IR ≥ 0.84 had lower FEV1, FVC, FEV1/FVC, DLCO and, PhA compared to those with IR < 0.84. After adjusting for confounding variables TBW, ECW, IR ≥ 0.84, PhA, and resistance/height increase were associated with decreased FEV1. In the same way, with IR ≥ 0.84, edema index ≥ 0.48, trunk and abdominal IR were negatively associated with FVC, and PhA had a positive association with FVC. Fluid distribution, especially IR and PhA, could be a useful parameter for predicting pulmonary function in COPD patients.


Subject(s)
Lung/physiopathology , Organism Hydration Status , Pulmonary Disease, Chronic Obstructive/physiopathology , Aged , Aged, 80 and over , Body Composition , Cross-Sectional Studies , Electric Impedance , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Vital Capacity
SELECTION OF CITATIONS
SEARCH DETAIL
...