Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 115: 104248, 2021 03.
Article in English | MEDLINE | ID: mdl-33360486

ABSTRACT

Ultra-high molecular weight polyethylene (UHMWPE) is a relevant thermoplastic in industry and a well-proven standard biomaterial in joint replacements. To enhance its tribological properties while preserving its bulk ones, composite coatings on a UHMWPE substrate were prepared using non-functionalised graphene nanoplatelet (GNP) at reinforcement concentration of 0.1-5 wt% and two mechanical mixing techniques (ball mill or blade mixer) with different consolidation temperatures of 175-240 °C. Changes in morphology and size of the UHMWPE particles before hot-pressing were observed in function of the mechanical mixing techniques applied. Wear rate was affected by graphene content, reaching a minimum at 0.5 wt% GNP, with a reduction of 20 and 15%, for ball milling and blade mixer, respectively. However, blade mixer increased the wear rate by around twice respect the ball milling results, for all the studied materials. The coefficient of friction decreased notably, by ~25%, below 3 wt% GNP content, and hardness increased by 24%, regardless of the mechanical mixing process used. Finally, consolidation temperature had a positive influence on wear rate at temperatures of around 195 °C, which could be related to the free radical scavenger effect of the GNP.


Subject(s)
Graphite , Biocompatible Materials , Materials Testing , Polyethylenes
2.
J Mech Behav Biomed Mater ; 30: 111-22, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24275347

ABSTRACT

Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior.


Subject(s)
Biocompatible Materials , Materials Testing , Mechanical Phenomena , Polyethylenes , Gamma Rays , Surface Properties
3.
Mater Sci Eng C Mater Biol Appl ; 33(1): 182-8, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-25428060

ABSTRACT

A novel, vitamin E-stabilized, medical grade ultra-high molecular polyethylene, MG003 (DSM Biomedical; The Netherlands), has been very recently introduced for use in total joint replacements. This homopolymer resin features average molecular weight similar to that of conventional GUR 1050 resin (5.5-6*10(6)g/mol), but a higher degree of linearity. The aim of this study was to characterize the microstructure, thermal and thermooxidation properties as well as the mechanical behavior of this novel MG003 resin before and after gamma irradiation in air to 90 kGy. For this purpose, a combination of experimental techniques were performed including differential scanning calorimetry (DSC), thermogravimetry (TG), transmission electron microscopy (TEM), X-Ray Diffraction, electron paramagnetic resonance (EPR), and uniaxial tensile tests. As-consolidated MG003 materials exhibited higher crystalline contents (~62%), transition temperatures (~140 °C), crystal thickness (~36 nm), yield stress (~25 MPa) and elastic modulus (~400 MPa) than GUR 1050 controls (55%, 136 °C, 27 nm, 19 MPa, and 353 MPa, respectively). Irradiation produced similar changes in both MG003 and GUR 1050 materials, specifically increased crystallinity (63% and 60%, respectively), crystal thickness (39 nm and 30 nm), yield stress (27 MPa and 21 MPa), but, above of all, loss of elongation to breakage (down to 442 and 469%, respectively). Thermogravimetric and EPR results suggest comparable susceptibilities to oxidation for both MG003 and GUR 1050 polyethylenes. Based on the present findings, MG003 appears as a promising alternative medical grade polyethylene and it may satisfactorily contribute to the performance of total joint replacements.


Subject(s)
Polyethylenes/chemistry , Vitamin E/chemistry , Acrylic Resins/chemistry , Calorimetry, Differential Scanning , Elastic Modulus , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Gamma Rays , Microscopy, Electron, Transmission , Oxidation-Reduction , Stress, Mechanical , Tensile Strength , Thermogravimetry , Transition Temperature , X-Ray Diffraction
4.
J Mater Sci Mater Med ; 22(7): 1701-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21574013

ABSTRACT

Orthopaedic materials may improve its capacity to resist bacterial adherence, and subsequent infection. Our aim was to test the bacterial adherence to alpha-tocopherol (frequently named vitamin E, VE) doped or blended UHMWPE with S. aureus and S. epidermidis, compared to virgin material. Collection strains and clinical strains isolated from patients with orthopaedic infections were used, with the biofilm-developing ability as a covariable. While collection strains showed significantly less adherence to VE-UHMWPE, some clinical strains failed to confirm this effect, leading to the conclusion that VE doped or blended UHMWPE affects the adherence of some S. epidermidis and S. aureus strains, independently of the concentration in use, but the results showed important intraspecies differences and cannot be generalized.


Subject(s)
Bacterial Adhesion/drug effects , Polyethylenes/chemistry , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Vitamin E/chemistry , Vitamin E/pharmacology , Biocompatible Materials/chemistry , Hydrophobic and Hydrophilic Interactions , Photoelectron Spectroscopy , Staphylococcus aureus/physiology , Staphylococcus epidermidis/physiology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...