Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 164: 641-658, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37068554

ABSTRACT

A phase-field model is developed to simulate the corrosion of Mg alloys in body fluids. The model incorporates both Mg dissolution and the transport of Mg ions in solution, naturally predicting the transition from activation-controlled to diffusion-controlled bio-corrosion. In addition to uniform corrosion, the presented framework captures pitting corrosion and accounts for the synergistic effect of aggressive environments and mechanical loading in accelerating corrosion kinetics. The model applies to arbitrary 2D and 3D geometries with no special treatment for the evolution of the corrosion front, which is described using a diffuse interface approach. Experiments are conducted to validate the model and a good agreement is attained against in vitro measurements on Mg wires. The potential of the model to capture mechano-chemical effects during corrosion is demonstrated in case studies considering Mg wires in tension and bioabsorbable coronary Mg stents subjected to mechanical loading. The proposed methodology can be used to assess the in vitro and in vivo service life of Mg-based biomedical devices and optimize the design taking into account the effect of mechanical deformation on the corrosion rate. The model has the potential to advocate further development of Mg alloys as a biodegradable implant material for biomedical applications. STATEMENT OF SIGNIFICANCE: A physically-based model is developed to simulate the corrosion of bioabsorbable metals in environments that resemble biological fluids. The model captures pitting corrosion and incorporates the role of mechanical fields in enhancing the corrosion of bioabsorbable metals. Model predictions are validated against dedicated in vitro corrosion experiments on Mg wires. The potential of the model to capture mechano-chemical effects is demonstrated in representative examples. The simulations show that the presence of mechanical fields leads to the formation of cracks accelerating the failure of Mg wires, whereas pitting severely compromises the structural integrity of coronary Mg stents. This work extends phase-field modeling to bioengineering and provides a mechanistic tool for assessing the service life of bioabsorbable metallic biomedical devices.


Subject(s)
Alloys , Metals , Alloys/chemistry , Corrosion , Stents , Dental Materials , Absorbable Implants , Materials Testing
2.
Philos Trans A Math Phys Eng Sci ; 379(2203): 20210021, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34148411

ABSTRACT

The phase field paradigm, in combination with a suitable variational structure, has opened a path for using Griffith's energy balance to predict the fracture of solids. These so-called phase field fracture methods have gained significant popularity over the past decade, and are now part of commercial finite element packages and engineering fitness- for-service assessments. Crack paths can be predicted, in arbitrary geometries and dimensions, based on a global energy minimization-without the need for ad hoc criteria. In this work, we review the fundamentals of phase field fracture methods and examine their capabilities in delivering predictions in agreement with the classical fracture mechanics theory pioneered by Griffith. The two most widely used phase field fracture models are implemented in the context of the finite element method, and several paradigmatic boundary value problems are addressed to gain insight into their predictive abilities across all cracking stages; both the initiation of growth and stable crack propagation are investigated. In addition, we examine the effectiveness of phase field models with an internal material length scale in capturing size effects and the transition flaw size concept. Our results show that phase field fracture methods satisfactorily approximate classical fracture mechanics predictions and can also reconcile stress and toughness criteria for fracture. The accuracy of the approximation is however dependent on modelling and constitutive choices; we provide a rationale for these differences and identify suitable approaches for delivering phase field fracture predictions that are in good agreement with well-established fracture mechanics paradigms. This article is part of a discussion meeting issue 'A cracking approach to inventing new tough materials: fracture stranger than friction'.

3.
Materials (Basel) ; 14(8)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920471

ABSTRACT

We present a simple and robust implementation of the phase field fracture method in Abaqus. Unlike previous works, only a user material (UMAT) subroutine is used. This is achieved by exploiting the analogy between the phase field balance equation and heat transfer, which avoids the need for a user element mesh and enables taking advantage of Abaqus' in-built features. A unified theoretical framework and its implementation are presented, suitable for any arbitrary choice of crack density function and fracture driving force. Specifically, the framework is exemplified with the so-called AT1, AT2 and phase field-cohesive zone models (PF-CZM). Both staggered and monolithic solution schemes are handled. We demonstrate the potential and robustness of this new implementation by addressing several paradigmatic 2D and 3D boundary value problems. The numerical examples show how the current implementation can be used to reproduce numerical and experimental results from the literature, and efficiently capture advanced features such as complex crack trajectories, crack nucleation from arbitrary sites and contact problems. The code developed is made freely available.

4.
Materials (Basel) ; 12(15)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31390786

ABSTRACT

Additive manufacturing is becoming a technique with great prospects for the production of components with new designs or shapes that are difficult to obtain by conventional manufacturing methods. One of the most promising techniques for printing metallic components is binder jetting, due to its time efficiency and its ability to generate complex parts. In this process, a liquid binding agent is selectively deposited to adhere the powder particles of the printing material. Once the metallic piece is generated, it undergoes a subsequent process of curing and sintering to increase its density (hot isostatic pressing). In this work, we propose subjecting the manufactured component to an additional post-processing treatment involving the application of a high hydrostatic pressure (5000 bar) at room temperature. This post-processing technique, so-called cold isostatic pressing (CIP), is shown to increase the yield load and the maximum carrying capacity of an additively manufactured AISI 316L stainless steel. The mechanical properties, with and without CIP processing, are estimated by means of the small punch test, a suitable experimental technique to assess the mechanical response of small samples. In addition, we investigate the porosity and microstructure of the material according to the orientations of layer deposition during the manufacturing process. Our observations reveal a homogeneous distribution independent of these orientations, evidencing thus an isotropic behaviour of the material.

5.
Materials (Basel) ; 12(2)2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30658447

ABSTRACT

We investigate the numerical implementation of functionally graded properties in the context of the finite element method. The macroscopic variation of elastic properties inherent to functionally graded materials (FGMs) is introduced at the element level by means of the two most commonly used schemes: (i) nodal based gradation, often via an auxiliary (non-physical) temperature-dependence, and (ii) Gauss integration point based gradation. These formulations are extensively compared by solving a number of paradigmatic boundary value problems for which analytical solutions can be obtained. The nature of the notable differences revealed by the results is investigated in detail. We provide a user subroutine for the finite element package ABAQUS to overcome the limitations of the most popular approach for implementing FGMs in commercial software. The use of reliable, element-based formulations to define the material property variation could be key in fracture assessment of FGMs and other non-homogeneous materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...