Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 442: 129983, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36193613

ABSTRACT

There is scarce information about the biotransformation of organic micropollutants (OMPs) under anoxic conditions. In this study, a heterotrophic denitrifying bioreactor was set up to study the fate of several OMPs from metabolic and microbiological points of view. Primary metabolic activity was increased by adding progressively higher nitrogen loading rates during the operation (from 0.075 to 0.4 g N-NO3- L-1 d-1), which resulted in an important shift in the microbial population from a specialized biomass to a more diverse community. Such a change provoked a significant increase in the removal efficiency of erythromycin (ERY), roxithromycin (ROX) and bisphenol-A (BPA), and some bacterial taxa, such as Rhodoplanes, were identified as possible indicators related to the biodegradation of these compounds. The increasing primary metabolic activity in the reactor did not enhance the OMP-specific removal rates, suggesting that the bacterial composition is more influential than cometabolism.


Subject(s)
Roxithromycin , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Roxithromycin/metabolism , Water Pollutants, Chemical/analysis , Bioreactors , Biotransformation , Nitrogen/metabolism , Bacteria/metabolism
2.
J Hazard Mater ; 402: 123450, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32731114

ABSTRACT

The innovative and recently discovered n-damo process, based on anaerobic methane oxidation with nitrite, was developed in a membrane-based bioreactor and evaluated in terms of organic micropollutants (OMPs) removal. The main singularity of this study consisted in the evaluation of organic micropollutants (OMPs) removal in the biological reactor. A strategy consisting on progressively increasing the nitrogen loading rate in order to increase the specific denitrification activity was followed to check if the selected OMPs were co-metabolically biotransformed. Significant nitrite removal rate (24.1 mg N L-1 d-1) was achieved after only 30 days of operation. A maximum specific removal of 186.3 mg N gVSS-1 d-1 was obtained at the end of the operation, which is one of the highest previously reported. A successfully n-damo bacteria enrichment was achieved, being Candidatus Methylomirabilis the predominant bacteria during the whole operation attaining a maximum relative abundance of about 40 %. The natural hormones (E1 and E2) were completely removed in the bioreactor. The specific removal rates of erythromycin (ERY), fluoxetine (FLX), roxithromycin (ROX) and sulfamethoxazole (SMX) were successfully correlated with the specific nitrite removal rates, suggesting a co-metabolic biotransformation.


Subject(s)
Methane , Nitrites , Anaerobiosis , Bioreactors , Denitrification , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...