Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 77(4): 1036-1047, 2019 May.
Article in English | MEDLINE | ID: mdl-30762095

ABSTRACT

Wolbachia is an intracellular endosymbiont that can produce a range of effects on host fitness, but the temporal dynamics of Wolbachia strains have rarely been experimentally evaluated. We compare interannual strain frequencies along a geographical region for understanding the forces that shape Wolbachia strain frequency in natural populations of its host, Chorthippus parallelus (Orthoptera, Acrididae). General linear models show that strain frequency changes significantly across geographical and temporal scales. Computer simulation allows to reject the compatibility of the observed patterns with either genetic drift or sampling errors. We use consecutive years to estimate total Wolbachia strain fitness. Our estimation of Wolbachia fitness is significant in most cases, within locality and between consecutive years, following a negatively frequency-dependent trend. Wolbachia spp. B and F strains show a temporal pattern of variation that is compatible with a negative frequency-dependent natural selection mechanism. Our results suggest that such a mechanism should be at least considered in future experimental and theoretical research strategies that attempt to understand Wolbachia biodiversity.


Subject(s)
Grasshoppers/microbiology , Polymorphism, Genetic , Symbiosis , Wolbachia/physiology , Animals , Biological Coevolution , Computer Simulation , Geography , Linear Models , Seasons , Wolbachia/genetics
2.
Front Genet ; 9: 604, 2018.
Article in English | MEDLINE | ID: mdl-30564272

ABSTRACT

Wolbachia is a well-known endosymbiotic, strictly cytoplasmic bacterium. It establishes complex cytonuclear relations that are not necessarily deleterious to its host, but that often result in reproductive alterations favoring bacterial transmission. Among these alterations, a common one is the cytoplasmic incompatibility (CI) that reduces the number of descendants in certain crosses between infected and non-infected individuals. This CI induced by Wolbachia appears in the hybrid zone that the grasshoppers Chorthippus parallelus parallelus (Cpp) and C. p. erythropus (Cpe) form in the Pyrenees: a reputed model in evolutionary biology. However, this cytonuclear incompatibility is the result of sophisticated processes of the co-divergence of the genomes of the bacterial strains and the host after generations of selection and coevolution. Here we show how these genome conflicts have resulted in a finely tuned adjustment of the bacterial strain to each pure orthopteroid taxon, and the striking appearance of another, newly identified recombinant Wolbachia strain that only occurs in hybrid grasshoppers. We propose the existence of two superimposed hybrid zones: one organized by the grasshoppers, which overlaps with a second, bacterial hybrid zone. The two hybrid zones counterbalance one another and have evolved together since the origin of the grasshopper's hybrid zone.

3.
Chromosome Res ; 25(3-4): 215-225, 2017 10.
Article in English | MEDLINE | ID: mdl-28477267

ABSTRACT

Wolbachia are endosymbiotic bacteria of arthropods and nematodes that can manipulate the reproduction of various host organisms to facilitate their own maternal transmission. Moreover, Wolbachia's presence in host germ cells may contribute to the many cases of lateral gene transfer from Wolbachia to host genomes that have been described. A previous study in Chorthippus parallelus, a well-known orthopteroid forming a hybrid zone in the Pyrenees, identified Wolbachia sequences from two major supergroups in the genomes of infected and uninfected Chorthippus parallelus parallelus (Cpp) and Chorthippus parallelus erythropus (Cpe) subspecies. In this study, we map the Wolbachia genomic inserts to specific regions on the chromosomes of Cpp and Cpe by fluorescent in situ hybridization (FISH) using tyramides to increase the accuracy and detection of these insertions. Additionally, we consider some of the possible roles that these bacterial inserts play in the organization and function of the grasshopper genome, as well as how they can serve as markers for phylogenetic relationships of these organisms.


Subject(s)
Chromosomes, Bacterial , Genome, Insect , Grasshoppers/genetics , Hybridization, Genetic , Mutagenesis, Insertional , Polytene Chromosomes , Wolbachia/genetics , Animals , Heterochromatin , In Situ Hybridization, Fluorescence , Male , Sequence Analysis, DNA
4.
PeerJ ; 3: e1479, 2015.
Article in English | MEDLINE | ID: mdl-26664808

ABSTRACT

Hybrid zones and the consequences of hybridization have contributed greatly to our understanding of evolutionary processes. Hybrid zones also provide valuable insight into the dynamics of symbiosis since each subspecies or species brings its unique microbial symbionts, including germline bacteria such as Wolbachia, to the hybrid zone. Here, we investigate a natural hybrid zone of two subspecies of the meadow grasshopper Chorthippus parallelus in the Pyrenees Mountains. We set out to test whether co-infections of B and F Wolbachia in hybrid grasshoppers enabled horizontal transfer of phage WO, similar to the numerous examples of phage WO transfer between A and B Wolbachia co-infections. While we found no evidence for transfer between the divergent co-infections, we discovered horizontal transfer of at least three phage WO haplotypes to the grasshopper genome. Subsequent genome sequencing of uninfected grasshoppers uncovered the first evidence for two discrete Wolbachia supergroups (B and F) contributing at least 448 kb and 144 kb of DNA, respectively, into the host nuclear genome. Fluorescent in situ hybridization verified the presence of Wolbachia DNA in C. parallelus chromosomes and revealed that some inserts are subspecies-specific while others are present in both subspecies. We discuss our findings in light of symbiont dynamics in an animal hybrid zone.

5.
Methods Mol Biol ; 1094: 109-35, 2014.
Article in English | MEDLINE | ID: mdl-24162984

ABSTRACT

This chapter describes the various methods derived from the protocol of standard fluorescent in situ hybridization (FISH) that are used in human, animal, plant, and microbial studies. These powerful techniques allow us to detect and physically map on interphase nuclei, chromatin fibers, or metaphase chromosomes probes derived from single-copy genes to repetitive DNA sequences. Other variants of the technique enable the co-localization of genes and the overall comparison of the genome among individuals of the same species or of different taxa. A further variant detects and localizes bacteria on tissues and cells. Overall, this offers a remarkable multiplicity of possible applications ranging from strict physical mapping, to clinical and evolutionary studies, making it a powerful and informative complement to other molecular, functional, or genomic approaches.


Subject(s)
Cytogenetic Analysis/methods , In Situ Hybridization, Fluorescence/methods , Animals , Bacteria/metabolism , Chromosomes, Human/metabolism , Chromosomes, Plant/metabolism , Comparative Genomic Hybridization , DNA/metabolism , Humans , Oligonucleotide Probes/metabolism , Plants/metabolism , Spectral Karyotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...