Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 13(10): 2180-2191, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37704212

ABSTRACT

Breast cancer occurring during pregnancy (PrBC) and postpartum (PPBC) is usually diagnosed at more advanced stages compared with other breast cancer, worsening its prognosis. PPBC is particularly aggressive, with increased metastatic risk and mortality. Thus, effective screening methods to detect early PrBC and PPBC are needed. We report for the first time that cell-free tumor DNA (ctDNA) is present in breast milk (BM) collected from patients with breast cancer. Analysis of ctDNA from BM detects tumor variants in 87% of the cases by droplet digital PCR, while variants remain undetected in 92% of matched plasma samples. Retrospective next-generation sequencing analysis in BM ctDNA recapitulates tumor variants, with an overall clinical sensitivity of 71.4% and specificity of 100%. In two cases, ctDNA was detectable in BM collected 18 and 6 months prior to standard diagnosis. Our results open up the potential use of BM as a new source for liquid biopsy for PPBC detection. SIGNIFICANCE: For the first time, we show that BM obtained from patients with breast cancer carries ctDNA, surpassing plasma-based liquid biopsy for detection and molecular profiling of early-stage breast cancer, even prior to diagnosis by image. See related commentary by Cunningham and Turner, p. 2125. This article is featured in Selected Articles from This Issue, p. 2109.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Female , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Retrospective Studies , Milk, Human , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Mutation
2.
STAR Protoc ; 3(4): 101712, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36317178

ABSTRACT

Immunotherapy has revolutionized cancer treatment, but preclinical models are required to understand immunotherapy resistance mechanisms underlying patient relapse. This protocol describes how to generate an acquired resistance humanized in vivo model to immunotherapies in patient-derived xenografts (PDX). We detail steps to inject human CD34+ cells into NSG mice, followed by generation of immunoresistant PDX in humanized mice. This approach recapitulates the human immune system, allowing investigators to generate preclinical resistance models to different immunotherapies for identifying the resistant phenotype. For complete details on the use and execution of this protocol, please refer to Martínez-Sabadell et al., 2022 and Arenas et al. (2021).


Subject(s)
Immunotherapy , Humans , Mice , Animals , Heterografts , Xenograft Model Antitumor Assays , Immunotherapy/methods , Disease Models, Animal
3.
Cell Rep ; 41(3): 111430, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261015

ABSTRACT

Despite the revolution of immunotherapy in cancer treatment, patients eventually progress due to the emergence of resistance. In this scenario, the selection of the tumor antigen can be decisive in the success of the clinical response. T cell bispecific antibodies (TCBs) are engineered molecules that include binding sites to the T cell receptor and to a tumor antigen. Using gastric CEA+/HER2+ MKN45 cells and TCBs directed against CEA or HER2, we show that the mechanism of resistance to a TCB is dependent on the tumor antigen. Acquired resistant models to a high-affinity-CEA-targeted TCB exhibit a reduction of CEA levels due to transcriptional silencing, which is reversible upon 5-AZA treatment. In contrast, a HER2-TCB resistant model maintains HER2 levels and exhibit a disruption of the interferon-gamma signaling. These results will help in the design of combinatorial strategies to increase the efficacy of cancer immunotherapies and to anticipate and overcome resistances.


Subject(s)
Antibodies, Bispecific , Humans , Antibodies, Bispecific/therapeutic use , Carcinoembryonic Antigen , Interferon-gamma/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes , Cell Line, Tumor
4.
Sci Adv ; 8(20): eabk2746, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35594351

ABSTRACT

Anti-HER2 therapies have markedly improved prognosis of HER2-positive breast cancer. However, different mechanisms play a role in treatment resistance. Here, we identified AXL overexpression as an essential mechanism of trastuzumab resistance. AXL orchestrates epithelial-to-mesenchymal transition and heterodimerizes with HER2, leading to activation of PI3K/AKT and MAPK pathways in a ligand-independent manner. Genetic depletion and pharmacological inhibition of AXL restored trastuzumab response in vitro and in vivo. AXL inhibitor plus trastuzumab achieved complete regression in trastuzumab-resistant patient-derived xenograft models. Moreover, AXL expression in HER2-positive primary tumors was able to predict prognosis. Data from the PAMELA trial showed a change in AXL expression during neoadjuvant dual HER2 blockade, supporting its role in resistance. Therefore, our study highlights the importance of targeting AXL in combination with anti-HER2 drugs across HER2-amplified breast cancer patients with high AXL expression. Furthermore, it unveils the potential value of AXL as a druggable prognostic biomarker in HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Humans , Phosphatidylinositol 3-Kinases/metabolism , Receptor, ErbB-2/genetics , Trastuzumab/pharmacology , Trastuzumab/therapeutic use
5.
Clin Cancer Res ; 28(7): 1243-1249, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34785585

ABSTRACT

IFNγ is a cytokine produced by a restricted number of immune cells that acts on every nucleated cell type. Consistent with this remarkably wide spectrum of targets, the effects of IFNγ are highly pleiotropic. On cells of the immune system, IFNγ signaling has generally a pro-inflammatory effect, coordinating the innate and adaptive responses. On nonimmune cells, IFNγ tends to exert the opposite effect; it inhibits cell proliferation, induces cell death, and, in addition, promotes their recognition by the immune system. These effects on the immune and nonimmune compartments play a crucial role during the immunoediting of tumors and, as shown by recent reports, also determine the efficacy of certain immunotherapies. Different therapeutic interventions to target IFNγ signaling are currently under way, and the emerging picture indicates that rewiring IFNγ signaling, disrupted in some cancer cells, may be an efficacious antitumor therapeutic strategy.


Subject(s)
Interferon-gamma , Neoplasms , Cell Proliferation , Cytokines/therapeutic use , Humans , Immunity , Neoplasms/drug therapy
6.
Cancer Res ; 81(14): 3849-3861, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33903121

ABSTRACT

Activating mutations in some isoforms of RAS or RAF are drivers of a substantial proportion of cancers. The main Raf effector, MEK1/2, can be targeted with several highly specific inhibitors. The clinical activity of these inhibitors seems to be mixed, showing efficacy against mutant BRAF-driven tumors but not KRAS-driven tumors, such as pancreatic adenocarcinomas. To improve our understanding of this context-dependent efficacy, we generated pancreatic cancer cells resistant to MEK1/2 inhibition, which were also resistant to KRAS and ERK1/2 inhibitors. Compared with parental cells, inhibitor-resistant cells showed several phenotypic changes including increased metastatic ability in vivo. The transcription factor SLUG, which is known to induce epithelial-to-mesenchymal transition, was identified as the key factor responsible for both resistance to MEK1/2 inhibition and increased metastasis. Slug, but not similar transcription factors, predicted poor prognosis of pancreatic cancer patients and induced the transition to a cellular phenotype in which cell-cycle progression becomes independent of the KRAS-RAF-MEK1/2-ERK1/2 pathway. SLUG was targeted using two independent strategies: (i) inhibition of the MEK5-ERK5 pathway, which is responsible for upregulation of SLUG upon MEK1/2 inhibition, and (ii) direct PROTAC-mediated degradation. Both strategies were efficacious in preclinical pancreatic cancer models, paving the path for the development of more effective therapies against pancreatic cancer. SIGNIFICANCE: This study demonstrates that SLUG confers resistance to MEK1/2 inhibitors in pancreatic cancer by uncoupling tumor progression from KRAS-RAF-MEK1/2-ERK1/2 signaling, providing new therapeutic opportunities. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3849/F1.large.jpg.


Subject(s)
MAP Kinase Signaling System , Pancreatic Neoplasms/metabolism , Snail Family Transcription Factors/metabolism , Animals , Cell Line, Tumor , Disease Progression , Female , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Pancreatic Neoplasms/genetics , raf Kinases/metabolism
7.
Nat Commun ; 12(1): 1237, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623012

ABSTRACT

Immunotherapy has raised high expectations in the treatment of virtually every cancer. Many current efforts are focused on ensuring the efficient delivery of active cytotoxic cells to tumors. It is assumed that, once these active cytotoxic cells are correctly engaged to cancer cells, they will unfailingly eliminate the latter, provided that inhibitory factors are in check. T cell bispecific antibodies (TCBs) and chimeric antigen receptors (CARs) offer an opportunity to test this assumption. Using TCB and CARs directed against HER2, here we show that disruption of interferon-gamma signaling confers resistance to killing by active T lymphocytes. The kinase JAK2, which transduces the signal initiated by interferon-gamma, is a component repeatedly disrupted in several independently generated resistant models. Our results unveil a seemingly widespread strategy used by cancer cells to resist clearance by redirected lymphocytes. In addition, they open the possibility that long-term inhibition of interferon-gamma signaling may impair the elimination phase of immunoediting and, thus, promote tumor progression.


Subject(s)
Antibodies, Bispecific/immunology , Down-Regulation , Drug Resistance, Neoplasm/immunology , Janus Kinase 2/metabolism , Neoplasms/immunology , Receptor, ErbB-2/metabolism , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Cell Line , Cytotoxicity, Immunologic , Humans , Interferon-gamma/metabolism , Mice , Signal Transduction , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...