Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 146(13): 4226-4234, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34095908

ABSTRACT

DNA hybridization phenomena occurring on solid supports are not understood as clearly as aqueous phase hybridizations and mathematical models cannot predict some empirically obtained results. Ongoing research has identified important parameters but remains incomplete to accurately account for all interactions. It has previously been shown that the length of the overhanging (dangling) end of the target DNA strand following hybridization to the capture probe is correlated to interactions with the complementary strand in solution which can result in unbinding of the target and its release from the surface. We have developed an instrument for real-time monitoring of DNA hybridization on spherical particles functionalized with oligonucleotide capture probes and arranged in the form of a tightly packed monolayer bead bed inside a microfluidic cartridge. The instrument is equipped with a pneumatic module to mediate displacement of fluid on the cartridge. We compared this system to both conventional (passive) and centrifugally-driven (active) microfluidic microarray hybridization on glass slides to establish performance levels for the detection of single nucleotide polymorphisms. The system was also used to study the effect of the dangling end's length in real-time when the immobilized target DNA is exposed to the complementary strand in solution. Our findings indicate that increasing the length of the dangling end leads to desorption of target amplicons from bead-bound capture probes at a rate approaching that of the initial hybridization process. Finally, bead bed hybridization was performed with Streptococcus agalactiae cfb gene amplicons obtained from randomized clinical samples, which allowed for identification of group B streptococci within 5-15 min. The methodology presented here is useful for investigating competitive hybridization mechanisms on solid supports and to rapidly validate the suitability of microarray capture probes.


Subject(s)
DNA , Microfluidics , DNA/genetics , DNA Probes/genetics , Nucleic Acid Hybridization , Oligonucleotide Probes/genetics
2.
J Bacteriol ; 190(22): 7548-58, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18790860

ABSTRACT

Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains form clades within the genus that mostly correlate with their phenotypic and genetic classifications. These genetic analyses revealed an unusual divergence between Yersinia tufA and tufB sequences, a feature unique among sequenced Enterobacteriaceae and indicative of a genus-wide loss of gene conversion. Furthermore, they provided valuable phylogenetic information for possible reclassification and identification of Yersinia species.


Subject(s)
Bacterial Proteins/genetics , Genetic Variation , Peptide Elongation Factor Tu/genetics , Yersinia/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Evolution, Molecular , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Yersinia/classification
4.
Int J Syst Evol Microbiol ; 55(Pt 5): 2013-2025, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16166704

ABSTRACT

The phylogeny of enterobacterial species commonly found in clinical samples was analysed by comparing partial sequences of their elongation factor Tu gene (tuf) and of their F-ATPase beta-subunit gene (atpD). An 884 bp fragment for tuf and an 884 or 871 bp fragment for atpD were sequenced for 96 strains representing 78 species from 31 enterobacterial genera. The atpD sequence analysis exhibited an indel specific to Pantoea and Tatumella species, showing, for the first time, a tight phylogenetic affiliation between these two genera. Comprehensive tuf and atpD phylogenetic trees were constructed and are in agreement with each other. Monophyletic genera are Cedecea, Edwardsiella, Proteus, Providencia, Salmonella, Serratia, Raoultella and Yersinia. Analogous trees based on 16S rRNA gene sequences available from databases were also reconstructed. The tuf and atpD phylogenies are in agreement with the 16S rRNA gene sequence analysis, and distance comparisons revealed that the tuf and atpD genes provide better discrimination for pairs of species belonging to the family Enterobacteriaceae. In conclusion, phylogeny based on tuf and atpD conserved genes allows discrimination between species of the Enterobacteriaceae.


Subject(s)
Bacterial Proton-Translocating ATPases/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Peptide Elongation Factor Tu/genetics , Phylogeny , Amino Acid Sequence , Bacterial Typing Techniques , Base Sequence , DNA, Ribosomal/analysis , Genes, rRNA , Humans , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...