Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6974, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38521863

ABSTRACT

Drosophila melanogaster is unique among animal models because it has a fully defined synthetic diet available to study nutrient-gene interactions. However, use of this diet is limited to adult studies due to impaired larval development and survival. Here, we provide an adjusted formula that reduces the developmental period, restores fat levels, enhances body mass, and fully rescues survivorship without compromise to adult lifespan. To demonstrate an application of this formula, we explored pre-adult diet compositions of therapeutic potential in a model of an inherited metabolic disorder affecting the metabolism of branched-chain amino acids. We reveal rapid, specific, and predictable nutrient effects on the disease state consistent with observations from mouse and patient studies. Together, our diet provides a powerful means with which to examine the interplay between diet and metabolism across all life stages in an animal model.


Subject(s)
Diet , Drosophila melanogaster , Animals , Drosophila melanogaster/metabolism , Longevity , Models, Animal , Nutrients
2.
Cell Rep ; 43(3): 113861, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38416643

ABSTRACT

Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Metabolic Diseases , Infant , Child , Animals , Humans , Nutrigenomics , Drosophila , Diet , Metabolic Diseases/genetics
3.
Pest Manag Sci ; 79(10): 3913-3925, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37248207

ABSTRACT

BACKGROUND: The insecticides spinosad and imidacloprid are neurotoxins with distinct modes of action. Both target nicotinic acetylcholine receptors (nAChRs), albeit different subunits. Spinosad is an allosteric modulator, that upon binding initiates endocytosis of its target, nAChRα6. Imidacloprid binding triggers excessive neuronal ion influx. Despite these differences, low-dose effects converge downstream in the precipitation of oxidative stress and neurodegeneration. RESULTS: Using RNA-sequencing, we compared the transcriptional signatures of spinosad and imidacloprid, at low-dose exposures. Both insecticides cause up-regulation of glutathione S-transferase and cytochrome P450 genes in the brain and down-regulation in the fat body, whereas reduced expression of immune-related genes is observed in both tissues. Spinosad shows unique impacts on genes involved in lysosomal function, protein folding, and reproduction. Co-expression analyses revealed little to no correlation between genes affected by spinosad and nAChRα6 expressing neurons, but a positive correlation with glial cell markers. We also detected and experimentally confirmed nAChRα6 expression in fat body cells and male germline cells. This led us to uncover lysosomal dysfunction in the fat body following spinosad exposure, and a fitness cost in spinosad-resistant (nAChRα6 null) males - oxidative stress in testes, and reduced fertility. CONCLUSION: Spinosad and imidacloprid share transcriptional perturbations in immunity-, energy homeostasis-, and oxidative stress-related genes. Low doses of other neurotoxic insecticides should be investigated for similar impacts. While target-site spinosad resistance mutation has evolved in the field, this may have a fitness cost. Our findings demonstrate the power of tissue-specific transcriptomics approach and the use of single-cell transcriptome data. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Drosophila , Insecticides , Macrolides , Animals , Male , Drosophila/drug effects , Drosophila/genetics , Drug Combinations , Gene Expression Profiling , Insecticide Resistance/genetics , Insecticides/pharmacology , Macrolides/pharmacology
4.
Bio Protoc ; 13(2): e4599, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36789165

ABSTRACT

Lysosomes play a central role in signaling, nutrient sensing, response to stress, and the degradation and recycling of cellular content. Defects in lysosomal digestive enzymes or structural components can impair lysosomal function with dire consequences to the cell, such as neurodegeneration. A number of methods exist to assess lysosomal stress in the model Drosophila, such as specific driver and reporter strains, transmission electron microscopy, and the investigation of gene expression. These methods, however, can be time consuming and, in some cases, costly. The procedure described here provides a quick, reliable, and low-cost approach to measure lysosomal stress in the Drosophila brain. Using fluorescence confocal microscopy and the LysoTracker staining, this protocol allows for the direct measurement of lysosome size and number. This method can be used to assess lysosomal stress under a number of different genetic and environmental scenarios in the Drosophila brain.

5.
Trends Endocrinol Metab ; 34(2): 85-105, 2023 02.
Article in English | MEDLINE | ID: mdl-36567227

ABSTRACT

Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.


Subject(s)
Diet , Drosophila , Animals , Humans , Drosophila/metabolism , Nutrigenomics/methods , Amino Acids/metabolism
6.
Bio Protoc ; 12(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36213109

ABSTRACT

Mitochondrial dysfunction is associated with perturbations in the cellular oxidative status, changes in energy production and metabolic rate, and the onset of pathological processes. Classic methods of assessing mitochondrial dysfunction rely on indirect measures, such as evaluating mitochondrial DNA copy numbers, or direct but more costly and skilled techniques, such as electron microscopy. The protocol presented here was recently implemented to evaluate mitochondrial dysfunction in response to insecticide exposure in Drosophila melanogaster larvae, and it relies on the use of a previously established MitoTimer mutant strain. MitoTimer is a genetically engineered mitochondrial protein that shows green fluorescence when newly synthetized, irreversibly turning into red as mitochondria age. The protocol described here allows for the easy and direct assessment of shifts in mitochondrial turnover, with tissue-specific accuracy. This protocol can be adapted to assess changes in mitochondrial turnover in response to drugs, rearing conditions, and/or mutations in larva, pupa, or adult fruit flies.

7.
Insect Biochem Mol Biol ; 146: 103774, 2022 07.
Article in English | MEDLINE | ID: mdl-35470035

ABSTRACT

Pollinator populations, including bees, are in rapid decline in many parts of the world, raising concerns over the future of ecosystems and food production. Among the factors involved in these declines, poor nutrition deserves attention. The diet consumed by adult worker honeybees (Apis mellifera) is crucial for their behavioral maturation, i.e., the progressive division of labor they perform, such as nurse bees initially and later in life as foragers. Poor pollen nutrition is known to reduce the workers' lifespan, but the underlying physiological and genetic mechanisms are not fully understood. Here we investigate how the lack of pollen in the diet of workers during their first week of adult life can affect age-related phenotypes. During the first seven days of adult life, newly emerged workers were fed either a pollen-deprived (PD) diet mimicking that of an older bee, or a control pollen-rich (PR) diet, as typically consumed by young bees. The PD-fed bees showed alterations in their fat body transcriptome, such as a switch from a protein-lipid based metabolism to a carbohydrate-based metabolism, and a reduced expression of genes involved with immune response. The absence of pollen in the diet also led to an accumulation of oxidative stress markers in fat body tissue and alterations in the cuticular hydrocarbon profiles, which became similar to those of chronologically older bees. Together, our data indicate that the absence of pollen during first week of adulthood triggers the premature onset of an aging-related worker phenotype.


Subject(s)
Aging, Premature , Animals , Bees , Diet , Ecosystem , Pollen , Transcriptome
8.
Elife ; 112022 02 22.
Article in English | MEDLINE | ID: mdl-35191376

ABSTRACT

Large-scale insecticide application is a primary weapon in the control of insect pests in agriculture. However, a growing body of evidence indicates that it is contributing to the global decline in population sizes of many beneficial insect species. Spinosad emerged as an organic alternative to synthetic insecticides and is considered less harmful to beneficial insects, yet its mode of action remains unclear. Using Drosophila, we show that low doses of spinosad antagonize its neuronal target, the nicotinic acetylcholine receptor subunit alpha 6 (nAChRα6), reducing the cholinergic response. We show that the nAChRα6 receptors are transported to lysosomes that become enlarged and increase in number upon low doses of spinosad treatment. Lysosomal dysfunction is associated with mitochondrial stress and elevated levels of reactive oxygen species (ROS) in the central nervous system where nAChRα6 is broadly expressed. ROS disturb lipid storage in metabolic tissues in an nAChRα6-dependent manner. Spinosad toxicity is ameliorated with the antioxidant N-acetylcysteine amide. Chronic exposure of adult virgin females to low doses of spinosad leads to mitochondrial defects, severe neurodegeneration, and blindness. These deleterious effects of low-dose exposures warrant rigorous investigation of its impacts on beneficial insects.


Subject(s)
Central Nervous System/drug effects , Lipid Metabolism/drug effects , Lysosomes/drug effects , Macrolides/pharmacology , Reactive Oxygen Species/metabolism , Animals , Dose-Response Relationship, Drug , Drosophila melanogaster , Drug Combinations , Insecticides/administration & dosage , Insecticides/pharmacology , Macrolides/administration & dosage
9.
Insect Biochem Mol Biol ; 131: 103547, 2021 04.
Article in English | MEDLINE | ID: mdl-33548485

ABSTRACT

Insecticides remain valuable tools for the control of insect pests that significantly impact human health and agriculture. A deeper understanding of insecticide targets is important in maintaining this control over pests. Our study systematically investigates the nicotinic acetylcholine receptor (nAChR) gene family, in order to identify the receptor subunits critical to the insect response to insecticides from three distinct chemical classes (neonicotinoids, spinosyns and sulfoximines). Applying the CRISPR/Cas9 gene editing technology in D. melanogaster, we were able to generate and maintain homozygous mutants for eight nAChR subunit genes. A ninth gene (Dß1) was investigated using somatic CRISPR in neural cells to overcome the low viability of the homozygous germline knockout mutant. These findings highlight the specificity of the spinosyn class insecticide, spinosad, to receptors containing the Dα6 subunit. By way of contrast, neonicotinoids are likely to target multiple receptor subtypes, beyond those receptor subunit combinations previously identified. Significant differences in the impacts of specific nAChR subunit deletions on the resistance level of flies to neonicotinoids imidacloprid and nitenpyram indicate that the receptor subtypes they target do not completely overlap. While an R81T mutation in ß1 subunits has revealed residues co-ordinating binding of sulfoximines and neonicotinoids differ, the resistance profiles of a deletion of Dß1 examined here provide new insights into the mode of action of sulfoxaflor (sulfoximine) and identify Dß1 as a key component of nAChRs targeted by both these insecticide classes. A comparison of resistance phenotypes found in this study to resistance reported in insect pests reveals a strong conservation of subunit targets across many different insect species and that mutations have been identified in most of the receptor subunits that our findings would predict to have the potential to confer resistance.


Subject(s)
Drosophila melanogaster , Insecticide Resistance/genetics , Insecticides/pharmacology , Receptors, Nicotinic , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drug Combinations , Macrolides/pharmacology , Mutation , Neonicotinoids/pharmacology , Pyridines/pharmacology , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Sulfur Compounds/pharmacology
10.
Proc Natl Acad Sci U S A ; 117(41): 25840-25850, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989137

ABSTRACT

Declining insect population sizes are provoking grave concern around the world as insects play essential roles in food production and ecosystems. Environmental contamination by intense insecticide usage is consistently proposed as a significant contributor, among other threats. Many studies have demonstrated impacts of low doses of insecticides on insect behavior, but have not elucidated links to insecticidal activity at the molecular and cellular levels. Here, the histological, physiological, and behavioral impacts of imidacloprid are investigated in Drosophila melanogaster, an experimental organism exposed to insecticides in the field. We show that oxidative stress is a key factor in the mode of action of this insecticide at low doses. Imidacloprid produces an enduring flux of Ca2+ into neurons and a rapid increase in levels of reactive oxygen species (ROS) in the larval brain. It affects mitochondrial function, energy levels, the lipid environment, and transcriptomic profiles. Use of RNAi to induce ROS production in the brain recapitulates insecticide-induced phenotypes in the metabolic tissues, indicating that a signal from neurons is responsible. Chronic low level exposures in adults lead to mitochondrial dysfunction, severe damage to glial cells, and impaired vision. The potent antioxidant, N-acetylcysteine amide (NACA), reduces the severity of a number of the imidacloprid-induced phenotypes, indicating a causal role for oxidative stress. Given that other insecticides are known to generate oxidative stress, this research has wider implications. The systemic impairment of several key biological functions, including vision, reported here would reduce the resilience of insects facing other environmental challenges.


Subject(s)
Drosophila melanogaster/drug effects , Drosophila melanogaster/physiology , Insecticides/toxicity , Neonicotinoids/toxicity , Neurons/drug effects , Nitro Compounds/toxicity , Reactive Oxygen Species/metabolism , Animals , Behavior, Animal/drug effects , Calcium/metabolism , Drosophila melanogaster/growth & development , Female , Imidazoles/analysis , Imidazoles/toxicity , Insecticides/analysis , Larva/drug effects , Larva/growth & development , Larva/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , Neonicotinoids/analysis , Neurons/metabolism , Nitro Compounds/analysis , Oxidative Stress/drug effects
11.
Sci Rep ; 7(1): 11338, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900129

ABSTRACT

Insecticide resistance is an economically important example of evolution in response to intense selection pressure. Here, the genetics of resistance to the neonicotinoid insecticide imidacloprid is explored using the Drosophila Genetic Reference Panel, a collection of inbred Drosophila melanogaster genotypes derived from a single population in North Carolina. Imidacloprid resistance varied substantially among genotypes, and more resistant genotypes tended to show increased capacity to metabolize and excrete imidacloprid. Variation in resistance level was then associated with genomic and transcriptomic variation, implicating several candidate genes involved in central nervous system function and the cytochrome P450s Cyp6g1 and Cyp6g2. CRISPR-Cas9 mediated removal of Cyp6g1 suggested that it contributed to imidacloprid resistance only in backgrounds where it was already highly expressed. Cyp6g2, previously implicated in juvenile hormone synthesis via expression in the ring gland, was shown to be expressed in metabolically relevant tissues of resistant genotypes. Cyp6g2 overexpression was shown to both metabolize imidacloprid and confer resistance. These data collectively suggest that imidacloprid resistance is influenced by a variety of previously known and unknown genetic factors.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Insecticides/pharmacology , Neonicotinoids/pharmacology , Neurons/drug effects , Neurons/metabolism , Nitro Compounds/pharmacology , Pharmacogenomic Variants , Animals , Gene Expression Profiling , Gene Knockout Techniques , Genome-Wide Association Study , Haplotypes , Multigene Family , Transcriptome
12.
Rev. bras. hematol. hemoter ; 38(4): 320-324, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-829951

ABSTRACT

ABSTRACT Background: Myelodysplastic syndromes (MDS) comprise a group of malignant clonal hematologic disorders characterized by ineffective hematopoiesis and propensity for progression to acute myeloid leukemia. Acquired mutations in the gene encoding RNA splicing factor 3B subunit 1 (SF3B1) are highly associated with the MDS subtypes presenting ring sideroblasts, and represent a specific nosological entity. The effects of these mutations on clinical outcomes are diverse and contrasting. Methods: A cohort of 91 Brazilian MDS patients, including patients with ring sideroblasts in the bone marrow, were screened for mutations in the SF3B1 hotspots (exons 12-15) by direct Sanger sequencing. Results: SF3B1 heterozygous mutations were identified in six patients (7%), all of them with ring sideroblasts, thus confirming the association between SF3B1 mutations and myelodysplastic syndrome subtypes bearing this morphologic feature (frequency of 6/13, p-value < 0.0001). Conclusion: This is the first screening of SF3B1 mutations in a cohort of Brazilian myelodysplastic syndrome patients. Our findings confirm that mutations in this splicing gene correlate with bone marrow ringed sideroblasts.


Subject(s)
Humans , Female , Myelodysplastic Syndromes , RNA Splicing , RNA Splicing Factors , Anemia, Sideroblastic , Mutation
13.
Rev Bras Hematol Hemoter ; 38(4): 320-324, 2016.
Article in English | MEDLINE | ID: mdl-27863760

ABSTRACT

BACKGROUND: Myelodysplastic syndromes (MDS) comprise a group of malignant clonal hematologic disorders characterized by ineffective hematopoiesis and propensity for progression to acute myeloid leukemia. Acquired mutations in the gene encoding RNA splicing factor 3B subunit 1 (SF3B1) are highly associated with the MDS subtypes presenting ring sideroblasts, and represent a specific nosological entity. The effects of these mutations on clinical outcomes are diverse and contrasting. METHODS: A cohort of 91 Brazilian MDS patients, including patients with ring sideroblasts in the bone marrow, were screened for mutations in the SF3B1 hotspots (exons 12-15) by direct Sanger sequencing. RESULTS: SF3B1 heterozygous mutations were identified in six patients (7%), all of them with ring sideroblasts, thus confirming the association between SF3B1 mutations and myelodysplastic syndrome subtypes bearing this morphologic feature (frequency of 6/13, p-value<0.0001). CONCLUSION: This is the first screening of SF3B1 mutations in a cohort of Brazilian myelodysplastic syndrome patients. Our findings confirm that mutations in this splicing gene correlate with bone marrow ringed sideroblasts.

SELECTION OF CITATIONS
SEARCH DETAIL
...