Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1362469, 2024.
Article in English | MEDLINE | ID: mdl-38841724

ABSTRACT

The impact of common and rare variants in COVID-19 host genetics has been widely studied. In particular, in Fallerini et al. (Human genetics, 2022, 141, 147-173), common and rare variants were used to define an interpretable machine learning model for predicting COVID-19 severity. First, variants were converted into sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. After that, the Boolean features, selected by these logistic models, were combined into an Integrated PolyGenic Score (IPGS), which offers a very simple description of the contribution of host genetics in COVID-19 severity.. IPGS leads to an accuracy of 55%-60% on different cohorts, and, after a logistic regression with both IPGS and age as inputs, it leads to an accuracy of 75%. The goal of this paper is to improve the previous results, using not only the most informative Boolean features with respect to the genetic bases of severity but also the information on host organs involved in the disease. In this study, we generalize the IPGS adding a statistical weight for each organ, through the transformation of Boolean features into "Boolean quantum features," inspired by quantum mechanics. The organ coefficients were set via the application of the genetic algorithm PyGAD, and, after that, we defined two new integrated polygenic scores (IPGSph1 and IPGSph2). By applying a logistic regression with both IPGS, (IPGSph2 (or indifferently IPGSph1) and age as inputs, we reached an accuracy of 84%-86%, thus improving the results previously shown in Fallerini et al. (Human genetics, 2022, 141, 147-173) by a factor of 10%.

2.
Chaos Solitons Fractals ; 139: 110064, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32834614

ABSTRACT

In a previous article [1] we have described the temporal evolution of the Sars-Cov-2 in Italy in the time window February 24-April 1. As we can see in [1] a generalized logistic equation captures both the peaks of the total infected and the deaths. In this article our goal is to study the missing peak, i.e. the currently infected one (or total currently positive). After the April 7, the large increase in the number of swabs meant that the logistical behavior of the infected curve no longer worked. So we decided to generalize the model, introducing new parameters. Moreover, we adopt a similar approach used in [1] (for the estimation of deaths) in order to evaluate the recoveries. In this way, introducing a simple conservation law, we define a model with 4 populations: total infected, currently positives, recoveries and deaths. Therefore, we propose an alternative method to a classical SIRD model for the evaluation of the Sars-Cov-2 epidemic. However, the method is general and thus applicable to other diseases. Finally we study the behavior of the ratio infected over swabs for Italy, Germany and USA, and we show as studying this parameter we recover the generalized Logistic model used in [1] for these three countries. We think that this trend could be useful for a future epidemic of this coronavirus.

3.
Chaos Solitons Fractals ; 140: 110150, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32834638

ABSTRACT

In this article we study the temporal evolution of the pandemic Sars-Cov-2 in Italy by means of dynamic population models. The time window of the available population data is between February 24, and March 25. After we upgrade the data until April 1. We perform the analysis with 4 different models and we think that the best candidate to correctly described the italian situation is a generalized Logistic equation. We use two coupled differential equations that model the evolution of the severe infected and the dead. This choice is due to the fact that in Italy the pharyngeal swabs are made only to severe infected, therefore we have no information about asymptomatic people. Moreover, an important observation is that the virus spreads between Regions with some delay. Indeed, we suggest that a different analysis, region by region, would be more sensible than one on the whole Italy. In particular the region Lombardy has a behaviour very fast compared to the other ones. We show the fit and forecast of the dead and total severe infected for Italy and five regions: Lombardy, Piedmont, Emilia-Romagna, Veneto and Tuscany. Finally we perform an analysis of the peak (intended, in our study, as the maximum of the daily total severe infected) and an estimation of how many lives have been saved by means of the LockDown.

4.
Phys Rev E ; 93(2): 022107, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26986288

ABSTRACT

Systems with long-range interactions display a short-time relaxation towards quasistationary states (QSSs) whose lifetime increases with the system size. In the paradigmatic Hamiltonian mean-field model (HMF) out-of-equilibrium phase transitions are predicted and numerically detected which separate homogeneous (zero magnetization) and inhomogeneous (nonzero magnetization) QSSs. In the former regime, the velocity distribution presents (at least) two large, symmetric bumps, which cannot be self-consistently explained by resorting to the conventional Lynden-Bell maximum entropy approach. We propose a generalized maximum entropy scheme which accounts for the pseudoconservation of additional charges, the even momenta of the single-particle distribution. These latter are set to the asymptotic values, as estimated by direct integration of the underlying Vlasov equation, which formally holds in the thermodynamic limit. Methodologically, we operate in the framework of a generalized Gibbs ensemble, as sometimes defined in statistical quantum mechanics, which contains an infinite number of conserved charges. The agreement between theory and simulations is satisfying, both above and below the out-of-equilibrium transition threshold. A previously unaccessible feature of the QSSs, the multiple bumps in the velocity profile, is resolved by our approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...